Transcript t - Read
Poisson Process
Review Session 2
EE384X
Winter 2004
EE384x
1
Point Processes
Supermarket model : customers arrive
(randomly), get served, leave the store
Arrival Process
Server
Queue
Departure Process
Need to model the arrival and departure
processes
Winter 2004
EE384x
2
What does Poisson Process
model?
Start time of Phone calls in Palo Alto
Session initiation times (ftp/web servers)
Number of radioactive emissions (or
photons)
Fusing of light bulbs, number of accidents
Historically, used to model packets
(massages) arriving at a network switch
(In Kleinrock’s PhD thesis, MIT 1964)
Winter 2004
EE384x
3
Properties
Say there has been 100 calls in an hour in
Palo Alto
We expect that :
The start time of each call is independent of the others
The start time of each call is uniformly distributed over
the one hour
The probability of getting two calls at exactly the same
time is zero
Poisson Process has the above properties
Winter 2004
EE384x
4
Notation
0
Winter 2004
EE384x
5
Notation
A(t) : Number of points in (0,t]
A(s,t) : Number of points in (s,t]
Arrival
points :
Inter-arrival times:
Winter 2004
EE384x
6
Poisson Process- Definition
A(0)=0 and each jump is of unit magnitude
Number of arrivals in disjoint intervals are
independent
For any
the random variables
are independent.
Number of arrivals in any interval of
length t is distributed Poisson(lt)
Winter 2004
EE384x
7
Basic Properties
Winter 2004
EE384x
8
Stationary Increments
The number of arrivals in (t,t+t] does not
depend on t
Winter 2004
EE384x
9
Orderliness
The probability of two or more arrivals in
an interval of length t gets small as
Arrivals occur “one at a time”
Winter 2004
EE384x
10
Poisson Rate
Probability of one arrival in a short interval
is (approx) proportional to interval length
Poisson process is like a continuous version
of Bernoulli IID
Winter 2004
EE384x
11
Additional Properties
Winter 2004
EE384x
12
Inter-arrival times
Inter-arrival times are Exponential(l) and
independent of each other
0
Winter 2004
EE384x
13
Points to the left and right
is a fixed point
closest point to the right (left) of
Apparent Paradox: Inter-arrival = sum two exp (why?)
Winter 2004
EE384x
14
Merging two Poisson processes
merge
Merging two independent Poisson processes
with rates l1 and l2 creates a Poisson
process with rate l1+l2
A(0)=A1(0)+A2(0)=0
Number of arrivals in disjoint intervals are independent
Sum of two independent Poisson rv is Poisson
Winter 2004
EE384x
15
Sum of two Poisson rv
Characteristic function:
So
Winter 2004
EE384x
16
Splitting a Poisson process
:Poisson process with rate
l
Split
For each point toss a coin (with bias p):
With probability p
With probability 1-p the point goes to A2(t)
A1(t) and
the point goes to A1(t)
A2(t) are two independent Poisson
processes with rates
Winter 2004
EE384x
17
proof
Define A1(t) and A2(t) such that:
A1(0)=0
A2(0)=0
Number of points in disjoint intervals are
independent for A1(t) and A2(t)
They depend on number of points in disjoint intervals of
A(t)
Need to show that number of points of A1
and A2 in an interval of size t are
independent Poisson(l1t) and Poisson(l2t)
Winter 2004
EE384x
18
Dividing a Poisson rv
Winter 2004
EE384x
19
Dividing a Poisson rv (cont)
So
Winter 2004
EE384x
20
Uniformity of arrival times
Given that there are n points in [0,t], the
unordered arrival times are uniformly
distributed and independent of each other.
Unordered variables
0
Ordered variables
Winter 2004
EE384x
21
Single arrival case
0
Winter 2004
EE384x
22
General case
It is the n order statistics of uniform
distribution.
Winter 2004
EE384x
23