Tackling LISA Data analysis challenge
Download
Report
Transcript Tackling LISA Data analysis challenge
Heterodyne detection with LISA
for gravitational waves parameters
estimation
Nicolas Douillet
SBPI 16/06/2009
1
Outline
• (1): LISA (Laser Interferometer Space
Antenna
• (2): Model for a monochromatic wave
• (3): Heterodyne detection principle
• (4): Some results on simulated data analysis
• (5): Conclusion & future work
SBPI 16/06/2009
2
LISA motion during one Earth period
2
rotation symmetry in ecliptic longitude ( ) between
3
two consecutive spacecraft orbits (S1 , S2 , S3 )
LISA geometry
2
S 2 S1
3
SBPI 16/06/2009
;
3
2
S3 S 2
3
LISA configuration
- Heliocentric orbits,
free falling spacecraft.
- LISA center of mass
Follows Earth, delayed
from a 20° angle.
- 60° angle between LISA
plan and the ecliptic plan.
- LISA arm’s length: 5. 109 m to detect gravitational waves with frequency
in: 10-4 10-1 Hz
- LISA periodic motion -> information on the direction of the wave.
SBPI 16/06/2009
4
Motivations for LISA
Existing ground based detectors such as VIRGO and LIGO are « deaf » in low
frequencies ( < 10 Hz).
Limited sensitivity due to « seismic wall » (LF vibrations transmitted by the
Newtonian fields gradient)
A space based detector
allows to get rid of this
constraint.
Possibility to detect
very low frequency
gravitional waves.
SBPI 16/06/2009
5
Monochromatic waves
Sources: signals coming from coalescing binaries
long before inspiral step. Frequency considered
as a constant.
H h h
h+ / h : amplitude following + / x polarization
+ / : directional functions
Gravitational wave causes
perturbations in the metric
tensor.
Effect (amplified) of a
Gravitational wave on a ring
of particles:
SBPI 16/06/2009
+ polarization
6
x polarization
Model for a monochromatic wave(1)
s s t , , , , ,, h, s i 1i N
Unknown parameters:
(Hz): source frequency
(rad): ecliptic latitude
(rad): ecliptic longitude
(rad): polarization angle
(rad): orbital inclination angle
h (-): wave amplitude
(rad): initial source phase
104 Hz 101 Hz
LISA response to the incoming GW:
F t h sin 2 t R sin cos
s t F t h cos 2 t R sin cos
SBPI 16/06/2009
7
2 t
T
T : LISA period (1 year)
Model for a monochromatic wave (2)
R
s t E t cos 2 t sin cos t
c
h F
h
F
t arctan
With
2 1/ 2
E t h F h F
2
and
h h 1 cos 2
SBPI 16/06/2009
;
Amplitude modulation (envelope)
Shape depends on source location: (, )
h 2h cos
8
Pattern beam functions (1)
Change of reference frame for
Dn , and Dn , pattern beam functions.
Fn , t
1
cos 2 Dn , t sin 2 Dn , t
2
Fn , t
1
sin 2 Dn , t cos 2 Dn , t
2
: polarization angle
1 n 3
Spacecraft n° in LISA triangle.
SBPI 16/06/2009
9
Pattern beam functions (2)
‘+’ polarization
Dn , t
3
[36sin 2 sin 2 2 n 1
64
3
3 cos 2 cos 2 9sin 2 n 1 sin 4 2 n 1
3
3
sin 2 cos 4 2 n 1 9 cos 2 n 1
3
3
4 3 sin 2 sin 3 2 n 1 3sin 2 n 1 ]
3
3
4 sidebands
SBPI 16/06/2009
10
2 t
: LISA orbital phase
T
Pattern beam functions (3)
‘x’ polarization
Dn t
1
[ 3 cos 9 cos 2 n 1 2
16
3
cos 4 2 n 1 2
3
6sin cos 3 2 n 1
3
3cos 2 n 1 ]
3
2 t
: LISA orbital phase
T
SBPI 16/06/2009
11
Envelope heterodyne detection (1)
Principle:
(1): Fundamental frequency (0) search
Detect the maximum in the spectrum of the product between source signal (s)
and a template signal (m) which frequency lays in the range: [0 ;0 ]
Frequency precision is reached with a nested search.
max S M
0
SBPI 16/06/2009
12
Envelope heterodyne detection (2)
(3): Shift spectrum (offset zero-frequency) by heterodyning at 0 , then low-pass
filtering
s t e2i0t S S 0 S 0
Y S H
(Filter above 0 )
8 lateral bands: [0; 7] (empirical) -> compromise between accepted noise
level and maximum frequency needed to rebuild the envelope ( = 1/ T)
(2): Envelope reconstruction
Fourier sum
7
E n Y k e
2 j n 1
k 1
N
k 0
SBPI 16/06/2009
13
Correlation optimization (1)
Correlation surface between template and experimental envelope
SBPI 16/06/2009
14
Correlation optimization (2)
(1) Principle: correlation maximization between signal envelope end envelope
template (or mean squares minimization).
E E
Corr E, E0 i
i 1 Ei E
2
N
E E
0
i0
Ei 0 E0
2
(2) Method: gradient convergence and quasi-Newton optimization methods.
lim Corr E, E0 0
j
(3) Conditions: already lay on the convex area which contains the maximum.
SBPI 16/06/2009
15
Signals and noises
SBPI 16/06/2009
16
Spectrum and instrumental noises
Sn1 N 1 ,1
0
2
SBPI 16/06/2009
17
Sn2 N 2 , 2
Sources mix
Possible to distinguish between n
sources since their fundamental
frequencies are spaced enough
(sidebands don’t cover each other):
Sources
j i 15
SBPI 16/06/2009
18
Envelope detection (1)
SBPI 16/06/2009
19
Envelope detection (2)
SBPI 16/06/2009
20
Symmetries & ambiguities
S ,
S ,
LISA main symmetry
Correlation symmetry
E(-, + ) = E(, )
Corr(, ) = Corr(-,+ )
SBPI 16/06/2009
21
Symmetries (1)
Some parameters remains difficult to estimate due to the high number of the
envelope symmetries on the parameters and .
Examples:
1/ 2
2
2
E t h F h F
Fi , Fi , ;
4
Fi , Fi , ;
4
Fi , Fi , ;
Fi , Fi , ;
4
Fi , Fi , ;
4
Fi , Fi , ;
SBPI 16/06/2009
22
0; 2
Symmetries (2)
Fi , Fi , ;
2
Fi , Fi , ;
2
Fi , Fi , ;
2
Fi , Fi , ;
2
h h ;
2
h h h ;
h h ;
0; 2
h h ;
0;
h h h
Ie -> risks of being stuck on correlation secondary maxima in N dimensions
space (varied topologies resolution problem).
SBPI 16/06/2009
23
How to remove sky location uncertainty (1)
Choice between (,) and (
-, +) depends on the sign of the product
2 R
k r t
sin cos
c
If is the colatitude (ie
[0; ] ), and when t=0
sgn k r t sgn cos
From the source signal, we compute the quantity
hF
sgn t Arg sa t Arc tan
h F
SBPI 16/06/2009
24
hence the sign of and
How to remove sky location uncertainty (2):
Source -> LISA, Doppler effect
t t
h F t
sin cos arc tan
c
h
F
t
R
1
2 R
f t
sin sin
2 t
cT
h F t
arc tan
t
h
F
t
;
2 R
v
f max 1
sin 1
cT
c
;
2 R
v
f min 1
sin 1
cT
c
;
SBPI 16/06/2009
25
2
2
0
How to remove sky location uncertainty (3):
Source -> LISA, Doppler effect
2 R
v
: LISA tangential speed
T
2 R : Ecliptic length
cT : Light year
f t
t
1 2 4 2 R
sin cos
2 t 2
cT 2
Moreover, if 0 (colatitude),
f t
t
f t
t
0 si -
2
0 si
SBPI 16/06/2009
2
2
: frequency seen by LISA increases.
3
: frequency seen by LISA decreases.
2
26
Source localization
Simulated data from LISA data analysis community
SBPI 16/06/2009
27
Statistics on sky location angles (,)
S 0 / 2, / 3
Max error: polar source ( = /2)
= f()
= f()
Max sensitivity: source direction to LISA plan
( ~ /6)
SBPI 16/06/2009
28
Noise robustness tests (static source)
True value
Estimations (180 runs on the noise)
SBPI 16/06/2009
29
Typical errors on estimated parameters
Average relative errors for /3
i/i
SBPI 16/06/2009
Ecliptic latitude
5. 10-2
Ecliptic longitude
1. 10-3
Polarization
1.5 10-1
Inclination angle
3. 10-1
~
Frequency
8.5 10-6
Amplitude h
0.5 – 1
X
30
Compare two parameters estimation
techniques: template bank vs MCMC
(1): Matching templates (template bank and scan parameters space till reaching
correlation maximum -> systematic method)
- Advantages: ● easy/friendly programmable
● quite good robustness
- Limitations: ● N dimensions parameters space. (memory space and computation
time expensive)
● difficulties to adapt and apply this method for more complex
waveforms
(2): MCMC methods, max likelihood ratio: motivations
(statistics & probability based methods)
- Advantages: ● No exhaustive scan of the parameters space (dim N).
● much lower computing cost and smaller memory space
- Limitations: ● Careful handling: high number parameters to tune in the
algorithm (choice of probability density functions of the parameters)
SBPI 16/06/2009
31
Conclusion and future work
- Encouraging results of this method (heterodyne
detection) on monochromatic waves. Could still to be
improved however.
- Continue to develop image processing techniques for
trajectories segmentation (chirp & EMRI) in timefrequency plan. (level sets, ‘active contours’ methods
import from medical imaging and shape optimization)
- Combining this methods (graphic first estimation of
parameters) with Monte-Carlo Markov Chains algorithms
(numeric finest estimation) allows in a way to ‘‘ logdivide’’ the dimensions of the parameters space (N5 + N2
instead of N7 for example).
SBPI 16/06/2009
32
Thank you for listening
SBPI 16/06/2009
33
GW modelling effect on LISA
SBPI 16/06/2009
34