Example - Ukrainian Risk Laboratory
Download
Report
Transcript Example - Ukrainian Risk Laboratory
PARALLEL COMPUTATIONS IN NONLIFE
INSURANCE BUSINESS OPTIMIZATION
BOGDAN NORKIN
V. M. Glushkov
Institute of Cybernetics
Kiev, Ukraine
HPC – UA 2012
OUTLINE
• Introduction: parallel actuarial calculations
• Problem – simulation of insurance company
• Model – risk process
• Data – Insurance company statistics
• Method – GPU accelerated simulations
• Goal – optimization of insurance business.
• RiskManagenentSystem overview
• Usage examples
RESERVS
RISK PROCESS MODEL
RUIN
EXSAMPLE - RISK PROCESS WITH
DIVIDEND BARRIER
c Rt dt
PARALLEL ACTUARIAL COMPUTATIONS
THE METHOD OF SUCCESSIVE APPROXIMATIONS
Our Equation
( x, t ) Ax ,t (, )
Method of successive approximations
k 1
( x, t ) Ax ,t (, )
k
For example…
( xi , t j )
k 1
tj
0
U ( xi , )
0
k U ( xi , ) z, t j dF ( z, ) 1 F , t j
CALCULATING K+1 ITERATION
Let us have K-th iteration
x
CALCULATING K+1 ITERATION
This is time grid
x
CALCULATING K+1 ITERATION
To obtain
k 1
we use values of
k in grid nodes
k x1
k 1 x1
x1
x2
xk
CALCULATING K+1 ITERATION
To obtain
k 1
And so on…
we use values of
k in grid nodes
CALCULATING K+1 ITERATION
To obtain
k 1
we use values of
k in grid nodes
And so on… just the same way
x
CALCULATING K+1 ITERATION
To obtain
k 1
we use values of
k in grid nodes
Due to independent nature of calculations we can use
more then one core (up to number of greed nodes)….
k 1 x j
k 1 xi
x
CALCULATING K+1 ITERATION
To obtain
k 1
we use values of
k in grid nodes
And as a result we can interpolate
k 1
x
RESERVS
COMPANY RESERVES SIMULATION
RUIN
We need millions of such simulations!
For real time modelling we need parallelization
PARALLEL ACTUARIAL COMPUTATIONS
Parallel actuarial simulations
Random outcome = Company simulation (Inputs)
Inputs
– hundreds
Simulations
– millions
Example:
Ruin Probability = Fraction of ruined trajectories
OPTIMIZATION PROBLEM
Dividend maximization
Subject to Bound on
• Ruin Probability ( ≤ 10-3 )
• Residual capital
RMS 0.2 - RISK MANAGEMENT SYSTEM
Realistic simulation
models
Adjusted to law
regulations
Real world data
Optimization over any
parameter (multi
criteria task)
Based on parallel
simulations
GPU accelerated powered by CUDA
User friendly
MAIN FEATURES
•On
the basis of company's claim statistics
One can:
•Estimate
•
•
•
•Build
ruin probability,
projected dividend size
residual reserve.
efficient frontier.
•Investigate any dependences.
MAIN BUGS
Just an α version…
SYSTEM OVERVIEW
Probability
of insolvency (Ruin)
as a function
of parameter
(dividend rate)
SYSTEM OVERVIEW
Resudual capital and
dividends
as functions
of parameter
(dividend rate)
SYSTEM OVERVIEW
Efficient frontier
(Profit vs Risk)
allows to select
a tradeoff point
CLAIM STATISTICS
Per quarter normalized claim statistics of a wellknown Ukrainian insurance company with foreign
capital.
EXTREME DEPENDENCES ILLUSTRATION–
RUIN PROBABILITY
DIVIDENDS & RESIDUAL RESERVE
EFFICIENT FRONTIER EXAMPLE
CONCLUSIONS
•
•
•
•
•
Insurance simulation model based on real world
data.
Risk/Profit optimization (Efficient frontier
constructing)
Any parameter can be an optimization variable.
Real time GPU accelerated Monte Carlo method.
(about 1 second for billions of trajectories)
And at last User friendly interface turns RMS 0.2 in
a very efficient and nice system
REFERENCES
•
•
•
•
Kaufmann R., Gadmer A., Klett R. Introduction to dynamic financial
analysis // ASTIN Bulletin, Vol. 31, No. 1, 2001, pp. 213-249.
Norkin B. Parallel computations in insurance business optimization
//Proceedings of the 1-st International Conference on High
Performance Computing. October 12-14, 2011, Kyiv, Ukraine. – P. 3339.
Норкин Б.В. Распараллеливание методов оценки риска
банкротства страховой компании // Теорія оптимальних рішень.
– Київ : Інститут Кібернетики, 2010. – Стор. 33-39.
Норкин Б.В. О вероятности разорения управляемого процесса
авторегрессии // Комп’ютерна математика. Ін-т кібернетики ім.
В.М. Глушкова. Київ, 2011. – С. 142-150.
THANK YOU FOR ATTENTION!
BOGDAN NORKIN
[email protected]
V. M. Glushkov
Institute of Cybernetics
Kiev, Ukraine
HPC – UA 2012