Overview of Data Analysis Concepts
Download
Report
Transcript Overview of Data Analysis Concepts
Statistics for
Decision Making
QM 2113 - Spring 2002
Descriptive Statistics
Review
What is statistics?
– Description (Data analysis) ---> Stage I
– Inference (Applying results) ---> Stage 2
Data types
– Quantitative (numeric)
– Qualitative (categorical)
Introduction to descriptive analysis
– Informal (tables & charts)
– Summary measures
Schematic View
Statistics
Quantitative Data
Informal
Summary Measures
Inferential Analyses
Qualitative Data
Informal
Summary Measures
Inferential Analyses
Probability is what allows the linkage between descriptive and inferential analyses
Sampling
Population
Sample
Statistic
Parameter
Very Important
Type of analysis depends upon data:
– Quantitative
• Ratio
• Interval
• Ordinal
– Qualitative
• Ordinal
• Nominal
Examples?
Descriptive Analysis
Three general forms
– Informal
• Tables
• Charts
– Formal: Numeric (i.e., statistics)
Forms basis for performing
inferential analyses
Descriptive Statistics
Qualitative data
– Percentages
– Analysis of proportions
Quantitative data
– Single numbers that summarize
• Location (i.e., general tendencies)
• Variation (i.e., how different the values are)
– Primary importance
• Mean
• Standard deviation
Primary Measures
Mean -- just a simple average
Add the values and divide by number of observations
Standard deviation
– Average difference among the values
– Process:
•
•
•
•
Subtract the average from each value
Square each result
“Average” the squared results
Take the square root of that result
Miscellaneous Statistics
Less important but need to be familiar
with:
– Location
• Median
• Mode
• Quantiles
– Variation
• Range
• Min and Max
– Both (?)
• Z-score
• Empirical Rule
Numeric Data: Charts
& Tables
Getting organized:
– Ordered array
– Frequency distribution
• Absolute frequencies
• Relative frequencies (%)
• Cumulative frequencies
– Cumulative relative frequencies
Histogram (frequencies)
Other
– Stem-leaf display
– Ogive (cumulative frequencies)
Frequency Distributions
Determining Frequency Groups
Start by breaking the data range into k
equal width intervals
– Let n represent the number of observations
– Number of intervals such that 2k > n
Interval width
– Start with:
(Max - Min) / k
– Use convenient breakpoints for intervals
• 91.0 through 97.4 (OK)
• 90.0 through 95.0 (Better)
Intervals: no overlap; no gaps
Frequency Distributions
Determining Frequencies
“Absolute” frequencies
Count number of observations in each
interval
Relative frequencies
Divide absolute frequency by total number
of observations
Cumulative frequencies
Add frequencies for all previous intervals
(note difference from manner done in
text)
Cumulative relative frequencies
Add relative frequencies for all previous
intervals
Histograms
What are they?
– Just graphical displays of frequency
distributions
• Absolute frequencies
• Relative frequencies
• Cumulative frequencies
– Provide “picture” of the variation in the
data
Basics
– Horizontal axis: values for variable of
concern
– Vertical axis: indicates corresponding
frequencies
Qualitative Data:
Charts & Tables
Frequency table is basis for chart
Same as with numerical data, except
data already are broken into frequency
groups (categories)
Bar chart
Pie chart
Pareto chart
Bar Charts and Pie
Charts
Bar chart
– Two formats
• Vertical (preferred)
• Horizontal
– Analogous to histograms, but
• Bars don’t touch each other
• Ordering of bars doesn’t matter
Pie chart
– Often preferable to bar charts
– Must identify slices
Summary
We’ve overviewed the basic informal
means of describing data
– Tables
– Charts
Type of exhibit depends on data type
– Quantitative
– Qualitative
What’s next: numerical summary
measures for numeric data