Introducing SigmaXL Version 6
Download
Report
Transcript Introducing SigmaXL Version 6
Introducing SigmaXL®
Version 6
Powerful.
User-Friendly.
Cost-Effective. Priced at $249, SigmaXL is a fraction
of the cost of any major statistical product, yet it has
all the functionality most professionals need.
Quantity, Educational, and Training discounts are
available.
Why SigmaXL?
Measure, Analyze, and Control your
Manufacturing, Service, or Transactional
Process.
An add-in to the already familiar Microsoft
Excel, making it a great tool for Lean Six
Sigma training. Used by Motorola University
and other leading consultants.
SigmaXL is rapidly becoming the tool of
choice for Quality and Business
Professionals.
What’s Unique to
SigmaXL?
User-friendly Design of Experiments with “view
power analysis as you design”.
Measurement Systems Analysis with Confidence
Intervals.
Two-sample comparison test - automatically tests for
normality, equal variance, means, and medians, and
provides a rules-based yellow highlight to aid the
user in interpretation of the output.
Low p-values are highlighted in red indicating that
results are significant.
What’s Unique to
SigmaXL?
Powerful Excel Worksheet Manager
List all open Excel workbooks
Display all worksheets and chart sheets in selected workbook
Quickly select worksheet or chart sheet of interest
Process Capability and Control Charts for Nonnormal data
Best fit automatically selects the best distribution or transformation!
Nonnormal Process Capability Indices include Pp, Ppk, Cp, and Cpk
Box-Cox Transformation with Threshold so that data with zero or
negative values can be transformed!
Recall Last Dialog
Recall SigmaXL Dialog
This will activate the last data worksheet and recall
the last dialog, making it very easy to do repetitive
analysis.
Activate Last Worksheet
This will activate the last data worksheet used
without recalling the dialog.
Worksheet Manager
List all open Excel
workbooks
Display all worksheets
and chart sheets in
selected workbook
Quickly select
worksheet or chart
sheet of interest
Recall Last Dialog
Recall SigmaXL Dialog
This will activate the last data worksheet and recall
the last dialog, making it very easy to do repetitive
analysis.
Activate Last Worksheet
This will activate the last data worksheet used
without recalling the dialog.
Data Manipulation
Subset by Category, Number, or Date
Random Subset
Stack and Unstack Columns
Stack Subgroups Across Rows
Standardize Data
Random Number Generators
Normal, Uniform (Continuous & Integer),
Lognormal, Exponential, Weibull and Triangular.
Box-Cox Transformation
Templates & Calculators
DMAIC & DFSS Templates:
Team/Project Charter
SIPOC Diagram
Flowchart Toolbar
Data Measurement Plan
Cause & Effect (Fishbone) Diagram and Quick
Template
Cause & Effect (XY) Matrix
Failure Mode & Effects Analysis (FMEA)
Quality Function Deployment (QFD)
Pugh Concept Selection Matrix
Control Plan
Templates & Calculators
Lean Templates:
Takt Time Calculator
Value Analysis/Process Load Balance
Value Stream Mapping
Basic Graphical Templates:
Pareto Chart
Histogram
Run Chart
Templates & Calculators
Basic Statistical Templates:
Sample Size – Discrete and Continuous
1 Sample t Confidence Interval for Mean
2 Sample t-Test (Assume Equal and Unequal
Variances)
1 Sample Confidence Interval for Standard Deviation
2 Sample F-Test (Compare 2 StDevs)
1 Proportion Confidence Interval (Normal and Exact)
2 Proportions Test & Fisher’s Exact
Probability Distribution Calculators:
Normal, Lognormal, Exponential, Weibull
Binomial, Poisson, Hypergeometric
Templates & Calculators
Basic MSA Templates:
Basic Process Capability Templates:
Process Sigma Level – Discrete and Continuous
Process Capability & Confidence Intervals
Basic DOE Templates:
Gage R&R Study – with Multi-Vari Analysis
Attribute Gage R&R (Attribute Agreement Analysis)
2 to 5 Factors
2-Level Full and Fractional-Factorial designs
Main Effects & Interaction Plots
Basic Control Chart Templates:
Individuals
C-Chart
Templates & Calculators:
Cause & Effect Diagram
Templates & Calculators:
Quality Function
Deployment (QFD)
Templates & Calculators:
Pugh Concept Selection
Matrix
Templates & Calculators:
Lean Takt Time Calculator
Templates & Calculators:
Value Analysis/
Process Load Balance Chart
Templates & Calculators:
Value Stream Mapping
Templates & Calculators:
Pareto Chart Quick Template
Count
Pareto Chart
100
100%
90
90%
80
80%
70
70%
60
60%
50
50%
40
40%
30
30%
20
20%
10
10%
0
0%
ls
al
-c
n
r
tu
Re
Di
or
ot-t
l
cu
ffi
r
de
l
o-to
s
ke
- ta
er
d
r
O
g
on
Category
l
co
gn
ro
W
or
il
va
-a
t
No
le
ab
Templates & Calculators:
Failure Mode & Effects
Analysis (FMEA)
Templates & Calculators:
Cause & Effect (XY)
Matrix
Templates & Calculators:
Sample Size Calculators
Templates & Calculators:
Sample Size Calculators
Templates & Calculators:
Process Sigma Level –
Discrete
Templates & Calculators:
Process Sigma Level –
Continuous
Templates & Calculators:
Two-Proportions Test &
Fisher’s Exact
Templates & Calculators:
Normal Distribution
Probability Calculator
Graphical Tools
Basic and Advanced (Multiple) Pareto Charts
EZ-Pivot/Pivot Charts
Run Charts (with Nonparametric Runs Test allowing
you to test for Clustering, Mixtures, Lack of
Randomness, Trends and Oscillation.)
Basic Histogram
Multiple Histograms and Descriptive Statistics
(includes Confidence Interval for Mean and StDev.,
as well as Anderson-Darling Normality Test)
Multiple Histograms and Process Capability
(Pp, Ppk, Cpm, ppm, %)
Graphical Tools
Multiple Boxplots and Dotplots
Multiple Normal Probability Plots (with 95%
confidence intervals to ease interpretation of
normality/non-normality)
Multi-Vari Charts
Scatter Plots (with linear regression and
optional 95% confidence intervals and
prediction intervals)
Scatter Plot Matrix
Graphical Tools:
Multiple Pareto Charts
2
Customer Type - Customer Type: # 1 - Size of Customer:
Large
6
4
2
Ordertakestoo-long
Notavailable
Wrongcolor
Difficultto-order
Returncalls
0
Customer Type - Customer Type: # 1 - Size of Customer:
Small
Ordertakestoo-long
10
8
6
4
2
0
Ordertakestoo-long
8
12
Notavailable
10
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
14
Count
12
Count
Customer Type - Customer Type: # 2 - Size of Customer:
Large
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
14
Notavailable
0
Ordertakestoo-long
Notavailable
Wrongcolor
Difficultto-order
Returncalls
0
4
Wrongcolor
2
6
Wrongcolor
4
8
Difficultto-order
6
10
Difficultto-order
8
12
Returncalls
Count
10
Returncalls
12
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
14
Count
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
14
Customer Type - Customer Type: # 2 - Size of Customer:
Small
Graphical Tools: EZ-Pivot/Pivot
Charts – The power of Excel’s
Pivot Table and Charts are now
easy to use!
Size of Customer (All)
70
Count of Major-Complaint
60
50
40
Customer Type
3
2
1
30
20
10
0
Difficult-to-order
Not-available
Order-takes-too-long
Major-Complaint
Return-calls
Wrong-color
Graphical Tools:
Multiple Histograms &
Descriptive Statistics
12
Overall Satisfaction - Customer Type: 1
10
Count = 31
Mean = 3.3935
Stdev = 0.824680
Range = 3.1
8
6
Minimum = 1.7200
25th Percentile (Q1) = 2.8100
50th Percentile (Median) = 3.5600
75th Percentile (Q3) = 4.0200
Maximum = 4.8
4
2
4.98
4.71
4.44
4.17
3.90
3.62
3.35
3.08
2.81
2.54
2.26
1.99
1.72
0
Overall Satisfaction - Customer Type: 1
95% CI Mean = 3.09 to 3.7
95% CI Sigma = 0.659012 to 1.102328
Anderson-Darling Normality Test:
A-Squared = 0.312776; P-value = 0.5306
12
Overall Satisfaction - Customer Type: 2
10
Count = 42
Mean = 4.2052
Stdev = 0.621200
Range = 2.6
8
6
Minimum = 2.4200
25th Percentile (Q1) = 3.8275
50th Percentile (Median) = 4.3400
75th Percentile (Q3) = 4.7250
Maximum = 4.98
4
2
Overall Satisfaction - Customer Type: 2
4.98
4.71
4.44
4.17
3.90
3.62
3.35
3.08
2.81
2.54
2.26
1.99
1.72
0
95% CI Mean = 4.01 to 4.4
95% CI Sigma = 0.511126 to 0.792132
Anderson-Darling Normality Test:
A-Squared = 0.826259; P-value = 0.0302
Graphical Tools:
Multiple Histograms &
Process Capability
Histogram and Process Capability Report
Room Service Delivery Time: Before Improvement (Baseline)
LSL = -10
Target = 0
USL = 10
160
140
120
Count = 725
Mean = 6.0036
Stdev (Overall) = 7.1616
USL = 10; Target = 0; LSL = -10
Capability Indices using Overall Standard Deviation
Pp = 0.47
Ppu = 0.19; Ppl = 0.74
Ppk = 0.19
Cpm = 0.36
Sigma Level = 2.02
Expected Overall Performance
ppm > USL = 288409.3
ppm < LSL = 12720.5
ppm Total = 301129.8
% > USL = 28.84%
% < LSL = 1.27%
% Total = 30.11%
100
80
60
Actual (Empirical) Performance
% > USL = 26.90%
% < LSL = 1.38%
% Total = 28.28%
40
20
0
Delivery Time Deviation
Histogram and Process Capability Report
Room Service Delivery Time: After Improvement
LSL = -10
Target = 0
Anderson-Darling Normality Test
A-Squared = 0.708616; P-value = 0.0641
Count = 725
Mean = 0.09732
Stdev (Overall) = 2.3856
USL = 10; Target = 0; LSL = -10
USL = 10
Capability Indices using Overall Standard Deviation
Pp = 1.40
Ppu = 1.38; Ppl = 1.41
Ppk = 1.38
Cpm = 1.40
Sigma Level = 5.53
160
140
120
Expected Overall Performance
ppm > USL = 16.5
ppm < LSL = 11.5
ppm Total = 28.1
% > USL = 0.00%
% < LSL = 0.00%
% Total = 0.00%
100
80
60
40
Actual (Empirical) Performance
% > USL = 0.00%
% < LSL = 0.00%
% Total = 0.00%
20
0
Delivery Time Deviation
Anderson-Darling Normality Test
A-Squared = 0.189932; P-value = 0.8991
Graphical Tools:
Multiple Boxplots
5
Overall Satisfaction
Overall Satisfaction
5
4
3
2
1
4
3
2
1
1
2
Customer Type - Size of Customer: Large
3
1
2
Customer Type - Size of Customer: Small
3
1
2
3
4
5
6
7
8
109
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
1099
0
Run Chart - Avg days Order to delivery time
Graphical Tools:
Run Charts with
Nonparametric Runs Test
67.40
62.40
57.40
52.40
Median: 49.00
47.40
42.40
37.40
32.40
3
3
2
2
1
1
NSCORE
NSCORE
Graphical Tools:
Multiple Normal Probability
Plots
0
0
-1
-1
-2
-2
-3
-3
1
2
3
4
Overall Satisfaction - Customer Type: 1
5
6
2.1
2.6
3.1
3.6
4.1
4.6
5.1
Overall Satisfaction - Customer Type: 2
5.6
6.1
Overall Satisfaction (Mean
Options)
Graphical Tools:
Multi-Vari Charts
4.634
4.634
4.634
4.634
4.134
4.134
4.134
4.134
3.634
3.634
3.634
3.634
3.134
3.134
3.134
3.134
2.634
2.634
2.634
2.634
2.134
2.134
2.134
2.134
#1
#2
Customer Type - Size of Customer:
Large - Product Type: Consumer
Standard Deviation
#1
#3
1.634
1.634
1.634
1.634
#2
#1
#3
Customer Type - Size of Customer: Small Product Type: Consumer
#2
#1
#3
Customer Type - Size of Customer: Large Product Type: Manufacturer
1.00
1.00
1.00
1.00
0.80
0.80
0.80
0.80
0.60
0.60
0.60
0.60
0.40
0.40
0.40
0.40
0.20
0.20
0.20
0.20
0.00
0.00
0.00
#1
#2
#3
Customer Type - Size of Customer:
Large - Product Type: Consumer
#1
#2
#3
Customer Type - Size of Customer: Small Product Type: Consumer
#2
#3
Customer Type - Size of Customer: Small Product Type: Manufacturer
0.00
#1
#2
#3
Customer Type - Size of Customer: Large Product Type: Manufacturer
#1
#2
#3
Customer Type - Size of Customer: Small Product Type: Manufacturer
Graphical Tools:
Multiple Scatterplots with
Linear Regression
5.1
4.6
y = 0.5238x + 1.6066
R2 = 0.6864
5.1
y = 0.5639x + 1.822
R2 = 0.6994
4.6
Overall Satisfaction
Overall Satisfaction
4.1
3.6
3.1
2.6
4.1
3.6
3.1
2.1
2.6
1.6
1.1
1.01
1.51
2.01
2.51
3.01
3.51
Responsive to Calls - Customer Type: 1
4.01
4.51
2.1
1.88
2.38
2.88
3.38
3.88
Responsive to Calls - Customer Type: 2
Linear Regression with 95%
Confidence Interval and Prediction Interval
4.38
4.88
y = 0.567x + 1.6103
R2 = 0.6827
3.7200
2.7200
1.7200
1.0000
2.0000
3.0000
4.0000
3.7200
2.7200
1.7200
1.4000
5.0000
Responsive to Calls
y = 1.2041x - 0.7127
R2 = 0.6827
2.0000
1.0000
1.7200 2.2200 2.7200 3.2200 3.7200 4.2200 4.7200
3.0000
2.0000
1.4000
1.7200 2.2200 2.7200 3.2200 3.7200 4.2200 4.7200
2.0000
3.0000
4.0000
5.0000
0.9600
1.7200 2.2200 2.7200 3.2200 3.7200 4.2200 4.7200
Overall Satisfaction
3.9600
y = 0.0799x + 2.9889
R2 = 0.0071
1.9600
0.9600
1.0000
2.0000
3.0000
4.0000
Responsive to Calls
5.0000
Staff Knowledge
1.9600
4.9600
2.9600
3.9600
3.9600
y = 0.0599x + 3.0732
R2 = 0.0026
2.9600
1.9600
0.9600
1.4000
4.9600
y = 0.0893x + 3.57
R2 = 0.0071
3.0000
2.0000
1.9600
2.9600
3.9600
2.4000
3.4000
4.4000
Ease of Communications
4.9600
Staff Knowledge
4.4000
y = 0.0428x + 3.6071
R2 = 0.0026
3.4000
2.4000
1.4000
0.9600
1.9600
2.9600
3.9600
Staff Knowledge
4.9600
Staff Knowledge
Staff Knowledge
2.9600
y = 0.303x + 2.5773
R2 = 0.1437
2.4000
1.4000
1.0000
2.9600
4.0000
1.0000
0.9600
4.4000
Responsive to Calls
4.9600
y = 0.1055x + 2.8965
R2 = 0.0059
3.4000
3.4000
Overall Satisfaction
3.9600
2.4000
Ease of Communications
2.4000
4.4000
1.9600
Staff Knowledge
Ease of Communications
Ease of Communications
Ease of Communications
Overall Satisfaction
3.4000
2.7200
5.0000
y = 0.4743x + 2.0867
R2 = 0.1437
4.0000
1.0000
1.4000
y = 0.0555x + 3.6181
R2 = 0.0059
3.7200
1.7200
0.9600
4.4000
Responsive to Calls
3.0000
y = 0.8682x + 0.4478
R2 = 0.5556
3.4000
5.0000
4.0000
4.4000
2.4000
4.7200
Ease of Communications
Responsive to Calls
Responsive to Calls
5.0000
y = 0.64x + 1.4026
R2 = 0.5556
4.7200
Overall Satisfaction
4.7200
Overall Satisfaction
Overall Satisfaction
Graphical Tools:
Scatterplot Matrix
4.9600
Statistical Tools
P-values turn red when results are significant (pvalue < alpha)
Descriptive Statistics including Anderson-Darling
Normality test, Skewness and Kurtosis with pvalues
1 Sample t-test and confidence intervals
Paired t-test, 2 Sample t-test
2 Sample Comparison Tests
Normality, Mean, Variance, Median
Yellow Highlight to aid Interpretation
Statistical Tools
One-Way ANOVA and Means Matrix
Two-Way ANOVA
Equal Variance Tests:
Balanced and Unbalanced
Bartlett
Levene
Welch’s ANOVA
Correlation Matrix
Pearson’s Correlation Coefficient
Spearman’s Rank
Statistical Tools
Multiple Linear Regression
Binary and Ordinal Logistic Regression
Chi-Square Test (Stacked Column data and
Two-Way Table data)
Nonparametric Tests
Power and Sample Size Calculators
Power and Sample Size Charts
Statistical Tools:
Two-Sample Comparison
Tests
P-values turn red
when results are
significant!
Rules based
yellow highlight to
aid interpretation!
Statistical Tools: One-Way
ANOVA & Means Matrix
4.48
Mean/CI - Overall Satisfaction
4.28
4.08
3.88
3.68
3.48
3.28
3.08
1
2
Customer Type
3
Statistical Tools:
Correlation Matrix
Statistical Tools:
Multiple Linear Regression
Accepts continuous and/or categorical (discrete)
predictors.
Categorical Predictors are coded with a 0,1 scheme
making the interpretation easier than the -1,0,1
scheme used by competitive products.
Interactive Predicted Response Calculator with
95% Confidence Interval and 95% Prediction
Interval.
Statistical Tools:
Multiple Linear Regression
Residual plots: histogram, normal probability plot,
residuals vs. time, residuals vs. predicted and residuals
vs. X factors
Residual types include Regular, Standardized,
Studentized
Cook's Distance (Influence), Leverage and DFITS
Highlight of significant outliers in residuals
Durbin-Watson Test for Autocorrelation in Residuals with
p-value
Pure Error and Lack-of-fit report
Collinearity Variance Inflation Factor (VIF) and Tolerance
report
Fit Intercept is optional
Statistical Tools:
Multiple Regression
Multiple Regression accepts Continuous and/or
Categorical Predictors!
Statistical Tools:
Multiple Regression
Durbin-Watson Test with p-values
for positive and negative
autocorrelation!
Statistical Tools: Multiple
Regression – Predicted
Response Calculator with
Confidence Intervals
Easy-to-use Calculator with
Confidence Intervals and Prediction Intervals!
Observation Order
-2
0
-3
Regular Residuals
1.50
1.5
1.00
1
-0.50
-1.00
Fitted Values
1.
10
10
12
0.
00
-1
10
0.
00
20
0.
60
1
80
.0
0
40
0.
10
2
60
.0
0
50
-0
.4
0
NSCORE
3
40
.0
0
0.00
-0
.9
0
Frequency
60
20
.0
0
0.50
Regular Residuals
1.
19
1.
01
0.
84
0.
67
0.
50
0.
32
0.
15
-0
.0
2
-0
.1
9
-0
.3
7
-0
.5
4
-0
.7
1
-0
.8
8
30
0.
00
12
0
10
0
80
60
40
20
0
Regular Residuals
Statistical Tools:
Multiple Regression with
Residual Plots
0
Residuals
0.5
0
-0.5
-1
Statistical Tools:
Binary and Ordinal
Logistic Regression
Powerful and user-friendly logistic regression.
Report includes a calculator to predict the response
event probability for a given set of input X values.
Categorical (discrete) predictors can be included in the
model in addition to continuous predictors.
Model summary and goodness of fit tests including
Likelihood Ratio Chi-Square, Pseudo R-Square, Pearson
Residuals Chi-Square, Deviance Residuals Chi-Square,
Observed and Predicted Outcomes – Percent Correctly
Predicted.
Statistical Tools:
Nonparametric Tests
1 Sample Sign
1 Sample Wilcoxon
2 Sample Mann-Whitney
Kruskal-Wallis Median Test
Mood’s Median Test
Kruskal-Wallis and Mood’s include a graph of
Group Medians and 95% Median Confidence
Intervals
Runs Test
Statistical Tools:
Chi-Square Test
Statistical Tools: Power &
Sample Size Calculators
1 Sample t-Test
2 Sample t-Test
One-Way ANOVA
1 Proportion Test
2 Proportions Test
The Power and Sample Size Calculators
allow you to solve for Power (1 – Beta),
Sample Size, or Difference (specify two, solve
for the third).
Statistical Tools: Power &
Sample Size Charts
Power & Sample Size: 1 Sample t-Test
1.2
Power (1 - Beta)
1
Difference = 0.5
0.8
Difference = 1
Difference = 1.5
0.6
Difference = 2
Difference = 2.5
0.4
Difference = 3
0.2
0
0
10
20
30
Sample Size (N)
40
50
60
Measurement Systems
Analysis
Basic MSA Templates
Create Gage R&R (Crossed) Worksheet
Generate worksheet with user specified
number of parts, operators, replicates
Analyze Gage R&R (Crossed)
Attribute MSA (Binary)
Measurement Systems
Analysis: Gage R&R
Template
Measurement Systems
Analysis: Create Gage R&R
(Crossed) Worksheet
Measurement Systems
Analysis: Analyze Gage
R&R (Crossed)
ANOVA, %Total, %Tolerance (2-Sided or 1Sided), %Process, Variance Components,
Number of Distinct Categories
Gage R&R Multi-Vari and X-bar R Charts
Confidence Intervals on %Total, %Tolerance,
%Process and Standard Deviations
Handles unbalanced data (confidence
intervals not reported in this case)
Measurement Systems
Analysis: Analyze Gage
R&R (Crossed)
Measurement Systems
Analysis:
Analyze Gage R&R with
Confidence Intervals
Confidence Intervals are calculated for Gage R&R Metrics!
Measurement Systems
Analysis:
Analyze Gage R&R with
Confidence Intervals
Pa
rt
01
Pa _O
p
rt
01 era
Pa _O tor
A
p
rt
01 era
t
_
o
Pa
O
rB
p
rt
02 era
t
_
o
Pa
O
rC
p
rt
02 era
t
or
Pa _O
A
p
rt
02 era
Pa _O tor
B
p
rt
03 era
t
_
o
Pa
O
rC
p
rt
03 era
t
_
o
Pa
O
rA
p
rt
03 era
t
or
Pa _O
B
p
rt
04 era
t
or
Pa _O
C
p
rt
04 erat
o
_
Pa
rA
O
p
rt
04 era
t
_
o
Pa
O
rB
p
rt
05 era
t
or
Pa _O
C
p
rt
05 era
t
or
Pa _O
A
p
rt
05 era
Pa _O tor
B
p
rt
06 era
t
_
o
Pa
O
rC
p
rt
06 era
t
_
o
Pa
O
rA
p
rt
06 era
t
or
Pa _O
B
p
rt
07 era
Pa _O tor
C
p
rt
07 era
to
_
Pa
O
rA
p
rt
07 erat
o
_
Pa
rB
O
p
rt
08 era
t
or
Pa _O
C
p
rt
08 era
Pa _O tor
A
p
rt
08 era
t
_
o
Pa
O
rB
p
rt
09 era
t
_
o
Pa
O
rC
p
rt
09 era
t
or
Pa _O
A
p
rt
09 era
t
or
Pa _O
B
p
rt
10 era
Pa _O tor
C
p
rt
10 era
t
_
o
Pa
O
rA
p
rt
10 era
_O tor
B
pe
ra
to
rC
R - Part/Operator - Measurement
Pa
rt
01
Pa _O
p
rt
01 era
Pa _O tor
A
p
rt
01 era
t
_
o
Pa
O
rB
p
rt
02 era
t
_
o
Pa
O
rC
p
rt
02 era
t
or
Pa _O
A
p
rt
02 era
t
or
Pa _O
B
p
rt
03 era
to
_
Pa
O
rC
p
rt
03 erat
o
_
Pa
rA
O
p
rt
03 era
t
or
Pa _O
B
p
rt
04 era
t
or
Pa _O
C
p
rt
04 era
Pa _O tor
A
p
rt
04 era
t
_
o
Pa
O
rB
p
rt
05 era
t
_
o
Pa
O
rC
p
rt
05 era
t
or
Pa _O
A
p
rt
05 era
to
Pa _O
rB
p
rt
06 erat
o
_
Pa
rC
O
p
rt
06 era
t
_
o
Pa
O
rA
p
rt
06 era
t
or
Pa _O
B
p
rt
07 era
Pa _O tor
C
p
rt
07 era
t
_
o
Pa
O
rA
p
rt
07 era
t
_
o
Pa
O
rB
p
rt
08 era
t
or
Pa _O
C
p
rt
08 erat
or
Pa _O
A
p
rt
08 era
t
_
o
Pa
O
rB
p
rt
09 era
t
_
o
Pa
O
rC
p
rt
09 era
t
or
Pa _O
A
p
rt
09 era
t
or
Pa _O
B
p
rt
10 era
Pa _O tor
C
p
rt
10 era
t
_
o
Pa
O
rA
p
rt
10 era
_O tor
B
pe
ra
to
rC
X-Bar - Part/Operator - Measurement
Measurement Systems
Analysis: Analyze Gage
R&R – X-bar & R Charts
Gage R&R - X-Bar by Operator
1.5430
1.4930
1.4615
1.4430
1.4213
1.3930
1.3812
1.3430
1.2930
1.2430
1.1930
Gage R&R - R-Chart by Operator
0.070
0.067
0.057
0.047
0.037
0.027
0.007
0.021
0.017
0.000
-0.003
Measurement Systems
Analysis: Analyze Gage
R&R – Multi-Vari Charts
Mean Options - Total
Gage R&R Multi-Vari
Gage R&R Multi-Vari
1.50879
1.50879
1.45879
1.45879
1.40879
1.40879
1.35879
1.35879
1.30879
1.30879
1.25879
1.25879
1.20879
1.20879
Operator A
Operator B
Operator - Part 01
Operator C
Operator A
Operator B
Operator - Part 02
Operator C
Measurement Systems
Analysis: Attribute MSA
(Binary)
Any number of samples, appraisers and
replicates
Within Appraiser Agreement, Each
Appraiser vs Standard Agreement, Each
Appraiser vs Standard Disagreement,
Between Appraiser Agreement, All
Appraisers vs Standard Agreement
Fleiss' kappa
Process Capability
(Normal Data)
Process Capability/Sigma Level Templates
Multiple Histograms and Process Capability
Capability Combination Report for
Individuals/Subgroups:
Histogram
Capability Report (Cp, Cpk, Pp, Ppk, Cpm,
ppm, %)
Normal Probability Plot
Anderson-Darling Normality Test
Control Charts
-12.66
28.28
3.28
81
10
1
12
1
14
1
16
1
18
1
20
1
22
1
24
1
26
1
28
1
30
1
32
1
34
1
36
1
38
1
40
1
42
1
44
1
46
1
48
1
50
1
52
1
54
1
56
1
58
1
60
1
62
1
64
1
66
1
68
1
70
1
72
1
7.34
81
10
1
12
1
14
1
16
1
18
1
20
1
22
1
24
1
26
1
28
1
30
1
32
1
34
1
36
1
38
1
40
1
42
1
44
1
46
1
48
1
50
1
52
1
54
1
56
1
58
1
60
1
62
1
64
1
66
1
68
1
70
1
72
1
61
41
21
1
Delivery Time Deviation
40
10
0
Delivery Time Deviation
27.34
27.61
22.34
17.34
12.34
2.34
Mean CL: 6.00
-2.66
-7.66
-17.66
-15.60
33.28
23.28
26.54
18.28
13.28
8.28
8.12
-1.72
0.00
27
60
17
2
7
3
70
-3
80
-13
50
NSCORE
90
-23
25.5
23.9
22.2
20.6
19.0
17.4
15.7
14.1
12.5
10.9
9.2
7.6
6.0
4.4
2.7
1.1
-0.5
Target = 0
61
41
21
1
Individuals - Delivery Time Deviation
LSL = -10
MR - Delivery Time Deviation
-2.1
-3.8
-5.4
-7.0
-8.6
-10.3
-11.9
Process Capability:
Capability Combination
Report
USL = 10
4
1
0
30
-1
20
-2
-3
-4
Process Capability for
Nonnormal Data
Box-Cox Transformation (includes an automatic threshold option
so that data with negative values can be transformed)
Johnson Transformation
Distributions supported:
Half-Normal
Lognormal (2 & 3 parameter)
Exponential (1 & 2 parameter)
Weibull (2 & 3 parameter)
Beta (2 & 4 parameter)
Gamma (2 & 3 parameter)
Logistic
Loglogistic (2 & 3 parameter)
Largest Extreme Value
Smallest Extreme Value
Process Capability for
Nonnormal Data
Automatic Best Fit based on AD p-value
Nonnormal Process Capability Indices:
Z-Score (Cp, Cpk, Pp, Ppk)
Percentile (ISO) Method (Pp, Ppk)
Distribution Fitting Report
All valid distributions and transformations reported
with histograms, curve fit and probability plots
Sorted by AD p-value
97
99
93
95
89
91
85
87
81
83
77
79
73
75
69
71
65
67
61
63
57
59
53
55
49
51
45
47
41
43
37
39
33
35
29
31
25
27
21
23
17
19
13
15
9
11
7
5
3
1
Individuals: Overall Satisfaction
(Percentile Control Limits)
5.26
4.98
4.71
4.44
4.17
3.90
3.62
3.35
3.08
2.81
2.54
2.26
1.99
1.72
1.45
Nonnormal Process Capability:
Automatic Best Fit
LSL = 3.5
16
14
12
10
8
6
4
2
0
Overall Satisfaction
5.500
5.000
5.136
4.500
4.000
3.500
3.885
3.000
2.500
2.000
1.500
1.548
Process Capability:
Box-Cox Power
Transformation
Normality Test is
automatically applied
to transformed data!
Design of Experiments
Basic DOE Templates
Automatic update to Pareto of Coefficients
Easy to use, ideal for training
Generate 2-Level Factorial and PlackettBurman Screening Designs
Main Effects & Interaction Plots
Analyze 2-Level Factorial and PlackettBurman Screening Designs
Basic DOE Templates
Design of Experiments:
Generate 2-Level Factorial
and Plackett-Burman
Screening Designs
User-friendly dialog box
2 to 19 Factors
4,8,12,16,20 Runs
Unique “view power analysis as you design”
Randomization, Replication, Blocking and
Center Points
Design of Experiments:
Generate 2-Level Factorial
and Plackett-Burman
Screening Designs
View Power Information
as you design!
Design of Experiments
Example: 3-Factor, 2-Level
Full-Factorial Catapult DOE
Objective: Hit a target at exactly 100 inches!
Design of Experiments:
Main Effects and
Interaction Plots
Design of Experiments:
Analyze 2-Level Factorial
and Plackett-Burman
Screening Designs
Used in conjunction with Recall Last Dialog, it
is very easy to iteratively remove terms from
the model
Interactive Predicted Response Calculator
with 95% Confidence Interval and 95%
Prediction Interval.
ANOVA report for Blocks, Pure Error, Lack-offit and Curvature
Collinearity Variance Inflation Factor (VIF)
and Tolerance report
Design of Experiments:
Analyze 2-Level Factorial
and Plackett-Burman
Screening Designs
Residual plots: histogram, normal probability
plot, residuals vs. time, residuals vs. predicted
and residuals vs. X factors
Residual types include Regular,
Standardized, Studentized (Deleted t) and
Cook's Distance (Influence), Leverage and
DFITS
Highlight of significant outliers in residuals
Durbin-Watson Test for Autocorrelation in
Residuals with p-value
Design of Experiments
Example: Analyze Catapult
DOE
Pareto Chart of Coefficients for Distance
25
15
10
5
B:
BC
AB
AC
AB
C
St
op
Pi
n
gh
t
He
i
C:
Pi
n
Pu
ll B
ac
k
0
A:
Abs(Coefficient)
20
Design of Experiments:
Predicted Response
Calculator
Excel’s Solver is used with the
Predicted Response Calculator to
determine optimal X factor
settings to hit a target distance of
100 inches.
95% Confidence Interval and
Prediction Interval
Design of Experiments:
Response Surface Designs
2 to 5 Factors
Central Composite and Box-Behnken Designs
Easy to use design selection sorted by number of
runs:
Design of Experiments:
Contour & 3D Surface Plots
Control Charts
Individuals
Individuals & Moving Range
X-bar & R
X-bar & S
P, NP, C, U
P’ and U’ (Laney) to handle overdispersion
I-MR-R (Between/Within)
I-MR-S (Between/Within)
Control Charts
Tests for Special Causes
Control Chart Selection Tool
Special causes are also labeled on the control
chart data point.
Set defaults to apply any or all of Tests 1-8
Simplifies the selection of appropriate control chart
based on data type
Process Capability report
Pp, Ppk, Cp, Cpk
Available for I, I-MR, X-Bar & R, X-bar & S charts.
Control Charts
Add data to existing charts – ideal for
operator ease of use!
Scroll through charts with user defined
window size
Advanced Control Limit options: Subgroup
Start and End; Historical Groups (e.g. split
control limits to demonstrate before and after
improvement)
Control Charts
Exclude data points for control limit calculation
Add comment to data point for assignable cause
± 1, 2 Sigma Zone Lines
Control Charts for Nonnormal data
Box-Cox and Johnson Transformations
16 Nonnormal distributions supported (see Capability
Combination Report for Nonnormal Data)
Individuals chart of original data with percentile based
control limits
Individuals/Moving Range chart for normalized data with
optional tests for special causes
Control Charts:
Individuals &
Moving Range Charts
oe
oe
oe
oe
oe
oe
oe
oe
8
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
X-Bar - Shot 1 - Shot 3
109.5292156
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
R - Shot 1 - Shot 3
Control Charts:
X-bar & R/S Charts
114.5292156
106.81
104.5292156
99.52921561
100.37
94.52921561
93.92
89.52921561
84.52921561
16
16.21776
14
12
10
6
6.30000
4
2
0
0.00000
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
4.00
8.00
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Individuals - Shot 1 - Shot 3
102.35
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
MR - Shot 1 - Shot 3
112.35
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
Da
vid
Su
e
Sa
lly
M
Jo
hn
R - Shot 1 - Shot 3
Control Charts: I-MR-R/S
Charts (Between/Within)
117.35
107.35
109.23
97.35
100.37
92.35
91.50
87.35
82.35
10.00
10.89000
8.00
6.00
3.33333
2.00
0.00
0.00000
16.00
16.21776
14.00
12.00
10.00
6.00
6.30000
4.00
2.00
0.00
0.00000
Control Chart Selection
Tool
Simplifies the
selection of
appropriate control
chart based on
data type
Includes Data
Types and
Definitions help
tab.
Control Charts:
Use Historical Limits;
Flag Special Causes
1
109.15
1 106.81
107.15
105.15
103.15
100.37
101.15
99.15
97.15
95.15
93.92
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
93.15
1
X-Bar - Shot 1 - Shot 3
5
Control Charts:
Add Comments as Data Labels
Control Charts:
Summary Report on
Tests for Special Causes
Control Charts:
Use Historical Groups to
Display Before Versus
After Improvement
Individuals - Delivery Time Deviation
31
Before Improvement
After Improvement
26
21
16
11
7.00
6
1
-4
-9
-14
-19
Mean CL: 0.10
-6.80
Control Charts:
Scroll Through Charts With
User Defined Window Size
Control Charts:
Process Capability Report
(Long Term/Short Term)
Individuals Chart for
Nonnormal Data:
Johnson Transformation
Individuals/Moving Range
Chart for Nonnormal Data:
Johnson Transformation
Control Charts:
Box-Cox Power
Transformation
Normality Test is
automatically applied
to transformed data!
Reliability/Weibull
Analysis
Weibull Analysis
Complete and Right Censored data
Least Squares and Maximum Likelihood
methods
Output includes percentiles with confidence
intervals, survival probabilities, and Weibull
probability plot.