Quantum Statistics Applications
Download
Report
Transcript Quantum Statistics Applications
Quantum Statistics:Applications
• Determine
P(E) = D(E) x n(E)
probability(E) = density of states x prob. per state
• electron in Hydrogen atom. What is the relative
probaility to be in the n=1 vs n=2 level?
D=2 for n=1
D=8 for n=2
as density of electrons is low can use Boltzman:
nFD
•
1
e
( E E F ) / kT
1
e
E / kT
E EF
can determine relative probability
P(n 2) 8 e E2 / kT
( E2 E1 ) / kT
4
e
P(n 1) 2 e E1 / kT
4e 10.2 / .026 10171 (!)
for E 10.2eV T 3000 K
• If want the ratio of number in 2S+2P to 1S to be .1
you need T = 32,000 degrees. (measuring the
relative intensity of absorption lines in a star’s
atmosphere or a interstellar gas cloud gives T)
P460 - Quan. Stats. II
1
1D Harmonic Oscillator
• Equally spaced energy levels. Number of states at
each is 2s+1. Assume s=0 and so 1 state/energy
level
• Density of states
D( E) NE 1
• N = total number of “objects” (particles) gives
normalization factor for n(E)
N D( E )n( E )dE
0
N
A E / kT
0
e
dE
AkT
N
A
kT
• note dependence on N and T
P460 - Quan. Stats. II
2
1D H.O. : BE and FD
• Do same for Bose-Einstein and Fermi-Dirac
1
1
nBE
n
FD
BeE / kT 1
BeE / kT 1
N
1
0
n( E )dE
1
BBE
BFD
1
( e E F / kT )
1 e N / kT
e N / kT 1
• “normalization” varies with T. Fermi-Dirac easier
to generalize
• T=0 all lower states fill up to Fermi Energy
1
1
n( E E F ) 1 ( E EF ) / kT
(T 0)
e
1 0 1
1
1
n( E E F ) 0
(T 0)
( E E F ) / kT
e
1 1
N
EF
0
1
1 dE
EF
or E F N
• In materials, EF tends to vary slowly with energy
(see BFD for terms). Determining at T=0 often
“easy” and is often used. Always where n(E)=1/2
P460 - Quan. Stats. II
3
Density of States “Gases”
• # of available states (“nodes”) for any wavelength
• wavelength --> momentum --> energy
• “standing wave” counting often holds:often called
“gas” but can be solid/liquid. Solve Scrd. Eq. In 1D
d2
dx 2
a 0
n
L
( x 0) ( x L) 0 0
n 2
L
2 L
kn
n k
L n
2
2L
n
• go to 3D. ni>0 and look at 1/8 of sphere
kx
n x
L
ky
n y
L
k z Lnz
1 4n3
# nodes
Degeneracy
8 3
1 4
( 2 L) 3
Deg 3
take derivative
8 3
4V
N ( )d 4 Degd
P460 - Quan. Stats. II
4
Density of States II
• The degenracy is usually 2s+1 where s=spin. But
photons have only 2 polarization states (as m=0)
• convert to momentum
p
h
hn
2L
# nodes
1 4
8 3
(2s 1)(
2 Lp 3
h
)
D( p)dp 2 (2s 1)( 2hL )3 p 2 dp
• convert to energy depends on kinematics
E pc dE cdp
relativistic
D( E )dE 2 (2s 1)( 2hcL )3 E 2 dE
8V 2
3 3 E dE
ch
for
• non-realtivistic
2
p
E
2m
p
dE dp
m
2L 3
m
D ( E )dE (2 s 1)( ) 2m E
dE
2
h
2m E
2L 3
(2 s 1)( ) 2m 3 / 2 E 1/ 2 dE
2
h
P460 - Quan. Stats. II
5
Plank Blackbody Radiation
• Photon gas - spin 1 Bosons - dervied from just stat.
Mech. (and not for a particular case) by S.N. Bose
in 1924
• Probability(E)=no. photons(E) = P(E) = D(E)*n(E)
• density of state = D(E) = # quantum states per
energy interval =
2
8 V E dE
3
3
c
h
• n(E) = probability per quantum state.
Normalization: number of photons isn’t fixed and
so a single higher E can convert to many lower E
n
1
e e
E / kT
1
1
e
E / kT
1
if E 0
• energy per volume per energy interval =
8 E 3
T ( E ) E D( E )n( E ) 3 3 E / kT
c h (e
1)
P460 - Quan. Stats. II
6
Phonon Gas and Heat Capacity
• Heat capacity of a solid depends on vibrational
modes of atoms
• electron’s energy levels forced high by Pauli Ex.
And so do not contribute
• most naturally explained using phonons
- spin 1 psuedoparticles
- correspond to each vibrational node
- velocity depends on material
• acoustical wave <---> EM wave
phonon
<---> photon
• almost identical statistical treatment as photons in
Plank distribution. Use Bose statistics
• done in E&R Sect 11-5, determines
dE
cV
dT
P460 - Quan. Stats. II
7