Lecture 6 - Relational Algebra I
Download
Report
Transcript Lecture 6 - Relational Algebra I
ICOM 5016 – Introduction to
Database Systems
Lecture 6
Dr. Manuel Rodriguez
Department of Electrical and Computer Engineering
University of Puerto Rico, Mayagüez
Chapter 3: Relational Model
Structure of Relational Databases
Relational Algebra
Tuple Relational Calculus
Domain Relational Calculus
Extended Relational-Algebra-Operations
Modification of the Database
Views
Database System Concepts
3.2
©Silberschatz, Korth and Sudarshan
Projection Operation
Given a relation R, the projection operation is used to create a
new relation S, such that each tuple ts is formed by taking a tuple
tR and removing one or more columns.
Formally, the projection of R over columns A1, A2, …,An is defined
as:
S A1 , A2 ,..., An ( R)
{ts ( A1 , A2 ,..., An ) | t R R, t R ( B1 , B2 ,..., Bk ),
and { A1 , A2 ,..., An } {B1 , B2 ,..., Bk }}
Database System Concepts
3.3
©Silberschatz, Korth and Sudarshan
Project Operation – Example
Relation r:
A,C (r)
Database System Concepts
A
B
C
10
1
20
1
30
1
40
2
A
C
A
C
1
1
1
1
1
2
2
=
3.4
©Silberschatz, Korth and Sudarshan
Project Operation
Notation:
A1, A2, …, Ak (r)
where A1, A2 are attribute names and r is a relation name.
The result is defined as the relation of k columns obtained by
erasing the columns that are not listed
Duplicate rows removed from result, since relations are sets
E.g. To eliminate the branch-name attribute of account
account-number, balance (account)
Database System Concepts
3.5
©Silberschatz, Korth and Sudarshan
Union Operation – Example
Relations r, s:
A
B
A
B
1
2
2
3
1
s
r
r s:
Database System Concepts
A
B
1
2
1
3
3.6
©Silberschatz, Korth and Sudarshan
Union Operation
Notation: r s
Defined as:
r s = {t | t r or t s}
For r s to be valid.
1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column
of r deals with the same type of values as does the 2nd
column of s)
E.g. to find all customers with either an account or a loan
customer-name (depositor) customer-name (borrower)
Database System Concepts
3.7
©Silberschatz, Korth and Sudarshan
Set Difference Operation – Example
Relations r, s:
A
B
A
B
1
2
2
3
1
s
r
r – s:
Database System Concepts
A
B
1
1
3.8
©Silberschatz, Korth and Sudarshan
Set Difference Operation
Notation r – s
Defined as:
r – s = {t | t r and t s}
Set differences must be taken between compatible relations.
r and s must have the same arity
attribute domains of r and s must be compatible
Database System Concepts
3.9
©Silberschatz, Korth and Sudarshan
Cartesian-Product Operation-Example
Relations r, s:
A
B
C
D
E
1
2
10
10
20
10
a
a
b
b
r
s
r x s:
Database System Concepts
A
B
C
D
E
1
1
1
1
2
2
2
2
10
10
20
10
10
10
20
10
a
a
b
b
a
a
b
b
3.10
©Silberschatz, Korth and Sudarshan
Cartesian-Product Operation
Notation r x s
Defined as:
r x s = {t q | t r and q s}
Assume that attributes of r(R) and s(S) are disjoint. (That is,
R S = ).
If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.
A tuple is r x s is made by concatenating the columns from the
first tuple, with the those of the second tuple.
Database System Concepts
3.11
©Silberschatz, Korth and Sudarshan
Composition of Operations
Can build expressions using multiple operations
Example: A=C(r x s)
rxs
A=C(r x s)
Database System Concepts
A
B
C
D
E
1
1
1
1
2
2
2
2
10
10
20
10
10
10
20
10
a
a
b
b
a
a
b
b
A
B
C
D
E
1
2
2
10
20
20
a
a
b
3.12
©Silberschatz, Korth and Sudarshan
Rename Operation
Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.
Allows us to refer to a relation by more than one name.
Example:
x (E)
returns the expression E under the name X
If a relational-algebra expression E has arity n, then
x (A1, A2, …, An) (E)
returns the result of expression E under the name X, and with the
attributes renamed to A1, A2, …., An.
Database System Concepts
3.13
©Silberschatz, Korth and Sudarshan
Banking Example
branch (branch-name, branch-city, assets)
customer (customer-name, customer-street, customer-only)
account (account-number, branch-name, balance)
loan (loan-number, branch-name, amount)
depositor (customer-name, account-number)
borrower (customer-name, loan-number)
Database System Concepts
3.14
©Silberschatz, Korth and Sudarshan
Example Queries
Find all loans of over $1200
amount > 1200 (loan)
Find the loan number for each loan of an amount greater than
$1200
loan-number (amount > 1200 (loan))
Database System Concepts
3.15
©Silberschatz, Korth and Sudarshan
Example Queries
Find the names of all customers who have a loan, an account, or
both, from the bank
customer-name (borrower) customer-name (depositor)
Find the names of all customers who have a loan and an
account at bank.
customer-name (borrower) customer-name (depositor)
Database System Concepts
3.16
©Silberschatz, Korth and Sudarshan
Example Queries
Find the names of all customers who have a loan at the Perryridge
branch.
customer-name (branch-name=“Perryridge”
(borrower.loan-number = loan.loan-number(borrower x loan)))
Find the names of all customers who have a loan at the
Perryridge branch but do not have an account at any branch of
the bank.
customer-name (branch-name = “Perryridge”
(borrower.loan-number = loan.loan-number(borrower x loan))) –
customer-name(depositor)
Database System Concepts
3.17
©Silberschatz, Korth and Sudarshan
Example Queries
Find the names of all customers who have a loan at the Perryridge
branch. Two possible solutions follow:
Query 1
customer-name(branch-name = “Perryridge” (
borrower.loan-number = loan.loan-number(borrower x loan)))
Query 2
customer-name(loan.loan-number = borrower.loan-number(
(branch-name = “Perryridge”(loan)) x borrower))
Database System Concepts
3.18
©Silberschatz, Korth and Sudarshan
Example Queries
Find the largest account balance
Rename account relation as d
The query is:
balance(account) - account.balance
(account.balance < d.balance (account x d (account)))
Database System Concepts
3.19
©Silberschatz, Korth and Sudarshan
Formal Definition
A basic expression in the relational algebra consists of either one
of the following:
A relation in the database
A constant relation
Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:
E1 E2
E1 - E2
E1 x E2
p (E1), P is a predicate on attributes in E1
s(E1), S is a list consisting of some of the attributes in E1
x (E1), x is the new name for the result of E1
Database System Concepts
3.20
©Silberschatz, Korth and Sudarshan
Additional Operations
We define additional operations that do not add any power to the
relational algebra, but that simplify common queries.
Set intersection
Natural join
Division
Assignment
Database System Concepts
3.21
©Silberschatz, Korth and Sudarshan
Set-Intersection Operation
Notation: r s
Defined as:
r s ={ t | t r and t s }
Assume:
r, s have the same arity
attributes of r and s are compatible
Note: r s = r - (r - s)
Database System Concepts
3.22
©Silberschatz, Korth and Sudarshan
Set-Intersection Operation - Example
Relation r, s:
A
B
1
2
1
A
r
rs
Database System Concepts
A
B
2
B
2
3
s
3.23
©Silberschatz, Korth and Sudarshan
Natural-Join Operation
Notation: r
s
Let r and s be relations on schemas R and S respectively.
Then, r
s is a relation on schema R S obtained as follows:
Consider each pair of tuples tr from r and ts from s.
If tr and ts have the same value on each of the attributes in R S, add
a tuple t to the result, where
t has the same value as t on r
r
t has the same value as t
s on s
Example:
R = (A, B, C, D)
S = (E, B, D)
Result schema = (A, B, C, D, E), and R S = (B,D)
r
s is defined as:
r.A, r.B, r.C, r.D, s.E (r.B = s.B r.D = s.D (r x s))
Database System Concepts
3.24
©Silberschatz, Korth and Sudarshan
Natural Join Operation – Example
Relations r, s:
A
B
C
D
B
D
E
1
2
4
1
2
a
a
b
a
b
1
3
1
2
3
a
a
a
b
b
r
r
s
Database System Concepts
s
A
B
C
D
E
1
1
1
1
2
a
a
a
a
b
3.25
©Silberschatz, Korth and Sudarshan