Transcript Respiration

How Organisms Exchange Gases:
Simple Diffusion
•
•
Gas is exchanged between
respiratory medium and
body fluids through
diffusion across a respiratory
surface
To effectively exchange
gases, the surface must be
1. thin
2. wet
How Organisms Exchange Gases:
Simple Diffusion
• Some animals have no specialized
respiratory organs or circulatory systems
– O2 obtained through simple diffusion
• O2 tension must be high enough at the
surface for O2 to reach the center of the
organism
How Organisms Exchange Gases:
Simple Diffusion
• With  radius, the greater [O2] at the surface must
be to supply oxygen to the core
– Example: radius = 1 mm, VO2 = 0.001 ml/g*min
PO2 needed= 0.15 atm
– Example: radius = 1 cm, VO2 = 0.001 ml/g*min
PO2 needed = 15 atm
• Few animals thicker than 1 mm rely on simple
diffusion for gas exchange
How Organisms Exchange Gases:
Respiratory Organs
• Larger animals possess specialized respiratory
surfaces
– regions with large surface area/volume ratio
• branches, flattened areas, etc. -  SA
• thin walls -  diffusion distance
– allow easy passage of gas into a circulatory system
• Convection of respiratory medium over the
respiratory surfaces (ventilation) typically required
Types of Respiratory Surfaces
• Integument
– use skin for gas exchange
– requires thin, moist, permeable
integument
• Evaginations (gills)
– specialized respiratory organ
– increases external surface area
• Invaginations (lungs)
– increase respiratory surface area
– protect respiratory surface
Respiratory Surface Ventilation
• Unidirectional Flow
– Medium flows over
respiratory surfaces in one
direction
– New medium continuously
flows over surfaces
• Bidirectional (Tidal) Flow
– Medium flows into
respiratory surfaces then out
in the opposite direction
– Incoming medium mixed
with “used” medium
Gas Exchange Between Body Fluids
and the Environment
• Occurs through diffusion
– Dependent on difference in PO2 and PCO2
between the body fluids and respiratory
medium
• The flow of body fluids relative to the flow
of the respiratory medium influence
pressure gradients for gas exchange
Patterns of Flow at Exchange
Surfaces
• Concurrent Flow
– Body fluid and respiratory medium flow in
same direction
– Gradient reduced with distance
• Countercurrent Flow
– Body fluid and respiratory medium flow in
opposite directions
– Gradients sustained over distance
• Crosscurrent Flow
– Body fluid and respiratory medium flow at
nonparallel angles to each other
– Gradient slowly decreases with distance
Respiration in Water: Integument
• Small Animals
– High SA/V ratio
• Large Animals
– Often elevated surface area
– Often used in conjunction with other respiratory systems
• Requires permeable integument
– Elevated water intake, ion loss, etc.
Respiration in Water: Lungs
• Not very practical
– Requires animal to generate tidal flow of
water
• Energetically expensive
• Low efficiency of O2 uptake
• Sea cucumber
– Respiratory tree derived from anal canal
Respiration in Water: Gills
• Evaginations of the respiratory
surface
– large surface area
– thin cuticle
• Used primarily for respiration in
water
– external exposure helps increase
circulation of medium across
respiratory surface
– water supports weight of the gills
without need for structural support
Respiration in Water:
Gill Ventilation
• Flow of water over gills is necessary for
supplying oxygen
– Move gill through the water (practical only for
small animals)
– Move water over the gill:
• ciliary action (bivalves)
• pumping devices (teleost fish and arthropods)
• ram ventilation (sharks, tuna)
Teleost Fish Gills: Structure
• Gills positioned on either
side of buccal cavity
underneath the operculum
• Four brachial arches, each
carrying two rows of gill
filaments
• Each filament carries rows
of parallel lamellae
• Capillary circulation is
countercurrent to water
Teleost Fish Gills: Ventilation
• Water flows into mouth,
over the gills, and out the
gill slits
• Water is driven across the
gills by two pumps:
– Buccal pressure pump
• forces water from mouth
over the gills
– Opercular suction pump
• sucks water from the mouth
over the gills
Buccal Pump Function
•
Mouth opens, buccal cavity floor depressed
–
•
Mouth closes, floor raises
–
–
•
•
drives water over gills into opercular cavities
tissue flaps prevent backflow of water back out mouth
Expansion of opercula draws water into opercular cavity
from oral cavity
–
•
Water drawn into buccal cavity
flaps prevent water from being pulled in through gill slits
Compression of opercula forces water out through the gill
slits
Synchronization of the two pumps allows flow over the gills
through most of the respiratory cycle
Respiration in Air
• Higher oxygen content
• Higher gas diffusion rates
– can get O2 from less volume
• Lower density and viscosity
– easier to move
• Loss of water problematic
Respiration in Air: Integument
• Use skin for gas exchange
• Limited surface area
• Must keep surface moist
• Often used in conjunction with other
respiratory organs
Respiration in Air: Integument
• Integumental exchange
often supplements that
of other respiratory
organs
• Relative contribution
of different surfaces to
overall gas exchange
varies among species
and among conditions
Respiration in Air: Integument
• Anurans
– Use both lungs and skin
for gas exchange
– Usage of each depends on
gas and on metabolic
demands and
developmental stage
Respiration in Air: Gills
• Uncommon
– poorly suited for gas exchange in air
• Thin, branched structures require support
– if too thin, collapse under own weight and stick
together due to water surface tension
– if too thick, lose effectiveness as respiratory surface
• External exposure increases evaporative water loss
– Covering reduces passive ventilation
Respiration in Air: Gills
Terrestrial Crabs and Isopods
• Smaller gills w/ fewer, shorter branches than
aquatic spp.
• Thicker cuticles on branches (more rigid)
• Chambers are larger and more highly
vascularized
– more lung-like
Modified Gill Structures of
Air-Breathing Fish
• Hundreds of fish species can breathe air
• Various structures
–
–
–
–
Vascularized buccal and opercular cavities
Suprabranchial chambers
Modified swim bladders
Modified digestive tract
• Possible adaptation to low PO2 water
Respiration in Air: Tracheae
• Network of air-filled tubes
(tracheae) extending
throughout body of the animal
• Connected to exterior by
spiracles (gated)
• Gas transport independent of
circulatory system
• Work by passive ventilation or
by active ventilation
Insects, Arachnids, Isopods
Respiration in Air: Tracheae
• Spiracles regulate gas
exchange and water loss
• Discontinuous gas
exchange
– CO2 released in bursts
accompanied by H2O loss
– Reduce H2O loss
– Avoid oxygen toxicity
Respiration in Air: Lungs
• Invaginations of the respiratory surface
– increase surface area
• Used primarily for air breathing
– supports and protects respiratory surface
– isolates volumes of air from the atmosphere
• reduces evaporative water loss
• requires pumping action for circulation of medium
Examples of Lungs
• Gastropods - simple cavity in mantle
– highly vascularized epithelium
– single opening (pneumostome)
– passive or active ventilation
Examples of Lungs
• Arachnids: Book Lung
– multiple lamellar folds
– typically passive air exchange
Examples of Lungs
• Alveolar Lungs
– Most terrestrial vertebrates
– formation of numerous
partitions or sacs (alveoli)
within the lungs
– walls of sacs very thin and
highly vascularized
– Tidally ventilated
Examples of Lungs
• Parabronchial Lungs (Birds)
– lungs connected to a series of
air sacs
– allows continuous,
unidirectional flow of air
through the lungs
How is Air Circulated in Lungs?
Two methods in vertebrates:
• Positive Pressure Pump
– push air out of oral cavity into the lungs
• Negative Pressure Pump
– pull air into lungs from oral cavity
Positive Pressure Lungs
Lungfish, Amphibians, Some Reptiles
1.
Glottis closed, buccal
cavity expanded, air
drawn in through nares
2.
Glottis opens, air in lung
passes out through nares
3. Nares close, oral cavity
compresses, driving
fresh air into lungs
Negative Pressure Lungs
Reptiles, Mammals, Birds
• Expansion of thoracic cavity pulls air into
lungs from oral/nasal cavities
• Relaxation of muscles compresses thoracic
cavity, pushing air out
Air Flow in Parabronchial Lungs
• Avian lungs are linked to
several air sacs
– cranial group
– caudal group
• Sacs not directly involved
in gas exchange
• Allow unidirectional flow
of air through the lungs
Air Flow in Parabronchial Lungs
• Requires two lung cycles for air
to move fully through the lungs
a Inspiration 1 - air drawn down
bronchus into caudal sacs
b Expiration 1 - air pushed from
caudal sacs into lungs
c Inspiration 2 - air pulled into
cranial sacs from lungs
d Expiration 2 - air pushed from
cranial sacs out bronchus
http://www.sci.sdsu.edu
/multimedia/birdlungs/
Air Flow in Parabronchial Lungs
• PO2 blood leaving lungs is
higher than that of the
exhaled air
• Blood flows cross-current
to the flow of air
– similar to countercurrent,
but not quite as effective
Regulation of Respiration
Air Breathers vs. Water Breathers
• PCO2 has greater effect on respiration frequency air
breathers
– O2 plentiful
– CO2 levels can build up ( pH)
• PO2 has greater effect on respiration frequency
water breathers
– O2 in short supply
– CO2 levels low and readily soluble in water