Physics 452 - BYU Physics and Astronomy
Download
Report
Transcript Physics 452 - BYU Physics and Astronomy
Physics 452
Quantum mechanics II
Winter 2012
Karine Chesnel
Physics 452
Homework
First homework assignment:
Tuesday Jan 10 by 10pm
Assignment # 1:
Problems 5.22, 5.23, 5.24
in the textbook
Second homework assignment:
Thursday Jan 12 by 10pm
Phys 452
Quantum statistical mechanics
N particles ( N
1)
Thermal equilibrium, T
Quantization of the energy
for individual particles
( E1 , E2 , E3 ,...)
Total energy:
E N1E1 N2 E2 N3 E3 ...
How many ways we get the configuration
Q N1 , N2 , N3 ,...
N , N
1
2,
N 3, ... ?
Phys 452
Quantum statistical mechanics
Example: 3 –particle system
• Textbook example
Infinite square well
E
2
2
ma 2
na2 nb2 nc2
• In-class example/ pb 5.23
Harmonic oscillator
3
E na nb nc
2
For each type of particles:
• List all the possible configurations
• Determine the number of combinations of each configuration
• Determine the probability of each configuration for a given energy
Phys 452
Quiz 1b
Consider 3 distinguishable particles in a harmonic oscillator potential.
If the total energy of the system is E 9 / 2
how many possibilities there are to get the configuration (1,1,1,0,…)?
A. 10
B. 4
C. 1
D. 6
E. 2
Phys 452
Quiz 1c
Consider 3 fermions particles in a harmonic oscillator potential.
If the total energy of the system is E 9 / 2
how many possibilities there are to get the configuration (1,1,1,0,…)?
A. 10
B. 4
C. 1
D. 6
E. 2
Phys 452
Quiz 1d
Consider 3 bosons in a harmonic oscillator potential.
If the total energy of the system is E 9 / 2
how many possibilities there are to get the configuration (1,1,1,0,…)?
A. 10
B. 4
C. 1
D. 6
E. 2
Phys 452
Quantum statistical mechanics
Statistical configuration number:
• Distinguishable particle
• Identical fermions
d nNn
Qdis N1 , N 2 , N3 ,.. N !
n 1 N n !
Q fermions N1 , N 2 , N 3 ,..
n 1
• Identical bosons
dn !
N n ! d n N n !
Qbosons N1 , N 2 , N3 ,..
n 1
N
n
dn 1 !
N n ! d n 1!
Work out example: harmonic oscillator, infinite square well
Phys 452
Quiz 2a
Let’s consider the Carbon atom: with 6 electrons
To be distributed in the energy levels E1 and E2
What is the number of combinations Q(2, 4, 0,....) ?
A. 6!
B. 15
C. 8!
D. 70
E. 45
Phys 452
Quiz 2b
Let’s consider the Carbon atom: with 6 electrons
to be distibuted in the shells (1s)(2s)(2p)
What is the number of combinations Q(2, 2, 2, 0,....) ?
A. 6!
B. 15
C. 8!
D. 70
E. 45
Phys 452
Quantum statistical mechanics
The most probable configuration
Lagrange multipliers, using:
N Nn
n 1
E N n En
n 1
G N1 , N 2 , N3 ,... ln Q N N n E N n En
n 1
n 1
Maximizing Q:
G
0
N n
Expressing Nn in terms of and
Phys 452
Quantum statistical mechanics
Most probable occupation number:
• Distinguishable particle
• Identical fermions
• Identical bosons
Nn dne
Nn
Nn
En
dn
e
En
e
1
dn 1
En
1
Phys 452
Quantum statistical mechanics
Significance of and :
En
e
E k BT
dimensionless
related to the temperature
related to chemical potential
1
k BT
(T )
k BT
Phys 452
Quantum statistical mechanics
Calculation of and :
Case of ideal gas (free electron gas)
One spherical shell
kz
kF
“degeneracy”
Fermi
surface
kx
density of states
d shell
dk
ky
Vk 2
dk
2
2
N
Bravais
k-space
Nk dk
k 0
Volume in k-space
of each individual state
Vunit
3
V
E
k 0
N k Ek d k
Phys 452
Quantum statistical mechanics
Calculation of and :
Case of ideal gas : distinguishable particles
N
Nk dk
k 0
N k Ek d k
k 0
Then using
2
E
E
m
N eV
2
3/2
1
k BT
3
m
E
Ve
2
2
We can express
2
3/2
(T ) kBT
3N
2
Phys 452
Quantum statistical mechanics
Case of ideal gas : distinguishable particles
N 3 2 2
(T ) k BT ln ln
V 2 mk BT
3
E Nk BT
2
Phys 452
Quantum statistical mechanics
Most probable occupation number:
E / k BT
Maxwell-Boltzmann
n
E
e
• Distinguishable particle
statistic
• Identical fermions
nE
• Identical bosons
nE
1
e
E / k BT
1
1
e E / k BT 1
Fermi- Dirac
statistic
Bose-Einstein
statistic
Phys 452
Quiz 2c
What is the maximum possible value
for the density of occupation in case of fermions?
A.
B. 1/ e 1
C. 1
D. 0
E. undetermined
Phys 452
Quantum statistical mechanics
Fermi-Dirac distribution:
nE
1
e
E / k BT
1
(0) EF
nE
1
e E EF / kBT 1
T 0
n 1 if E 0
n 0 if
E 0