SOME ASPECTS OF STRANGE MATTER : STARS AND
Download
Report
Transcript SOME ASPECTS OF STRANGE MATTER : STARS AND
Overview of Astroparticle
Physics
4th Winter School on Astroparticle Physics
Mayapuri, Darjeeling
Rajarshi Ray
Center for Astroparticle Physics & Space Science
Bose Institute
Kolkata
1
Album of the Universe
2
Content of the Universe- Today
• Dark Energy ~ 73%
• Dark Matter ~ 23%
• Rest of it is whatever we see and know of!!
We see today matter as small as elementary
particles to as large as galaxies and cluster
of galaxies.
3
Particle Physics in Astrophysics
Identifying the elementary particles
(cosmic rays) and their formation
mechanisms.
The primordial quantum mechanical
fluctuations that serve as starting point in
large scale structure formation.
Properties of the dark side of the Universe.
4
Particle Physics ~ 1870
5
More Elementary Particles
• electrons (1897) J.J.Thomson
– orbit atomic nucleus
• photon (1905) Einstein
– quantum of the electromagnetic field
• Rutherford Experiment (1909)
– nucleus : occupies only a small fraction of the atom
• proton (1919)
– nucleus of lightest atom
• neutron (1932) Chadwick – Beryllium bombarded by particle
- highly penetrating radiation
– neutral constituent of the nucleus
6
Spin and anti-particles
• Pauli – 1924 – suggested additional quantum number for
electron in an atom which could take two values
• Goudsmit & Uhlenbeck – 1925 – explained the fine
structure in atomic spectra – introduced spin angular
momentum for electrons in addition to orbital angular
momentum
• Dirac – 1927 - Relativistic equation for electron
- Natural basis for electron spin
- existence of antiparticle
• Discovery of positron – 1932 – Anderson – Cosmic Ray
7
Natural Units
Velocity of light c =
m
8
310
sec
=1
1
sec.
3
10
m
8
Planck’s Constant
1.051034J sec.
16
6.610 eVsec.
1
19
(1eV1.610 J)
Temperature - Energy - Mass = MeV (106 eV)
Length - Time = fm (10-15 m)
8
Natural Units
Me = 0.511 MeV = 9.1 X 10-31 Kg
1 M (Solar Mass) = 2 X 1030 Kg
Boltzman Constant k = 1.38 X 10-23 J/ 0k = 1
1 MeV (Temperature) = 1010 0K
9
• 1929 – Quantum Electrodynamics
- quantization of electromagnetic field
- field quanta
Photon
- charged particles interact with the exchange of photon
Moller scattering
Crossing Symmetry
if A B C D is allowed
then A B C D
AC BD
C D A B are allowed
Compton scattering
Bhabha scattering
10
Incidentally, issue of behaviour of radiation as particle – the photon –
was finally settled in 1923 by A. H. Compton. Compton found that the
light scattered from a particle at rest is shifted in wavelength as given
by
(1 cos )
c
scattering angle
- incident wavelength, - scattered wavelength,
c =h/mc = Compton wavelength of the target particle (compare it
with de-Broglie wavelength)
Apply laws of conservation
of relativistic energy and
momentum
11
•
What binds proton and neutron in the nucleus??
• Positively charged protons should repel each other.
•
some force stronger than electromagnetic force
- STRONG FORCE
•
First evidence – 1921 – Chadwick & Bieler
scattering on hydrogen can not be explained by Coulomb
interaction only
• Why we do not feel this force everyday?
- must be of short range
er / a
F~ n
r
Gravitational and electromagnetic forces have infinite range; a=
For strong a ≈ 10-13 cm = 1 fm
12
• Yukawa -1934
Just as electron is attracted to nucleus by electric
field, proton and neutron are also bound by field
- what is the field quanta – pions
- 1947 – two particle discovered by Powell and
co-workers
- one is pion which is produced copiously in the
upper atmosphere but disintegrates before
reaching ground
- the other one was muon - pion decays into
muons which is observed at the ground level
13
Neutrino
• decay – If A B + eThen for fixed A, the energy of electron will be
fixed.
Experimentally, electron energy was found to be
varying considerably
Presence of a third particle – Pauli
Fermi theory of decay – existence of neutrino
- massless and chargeless
Decay n p e
decay µ+ & µe+2 (Powell)
14
15
16
17
The strange particles
1947 – Rochester & Butler – Cosmic ray particle – passing through a
lead plate – neutral secondary decaying into two charged particles
K0 + + 1949 - Powell – K+ (+) + + + + K+ (+) + + 0
- puzzle – Parity violation in
weak decays
K particles behave as heavy pions
K mesons (strange meson)
1950 – Anderson – photograph similar to
Rochester’s
p+ + Belongs to which family ???
18
•
proton does not decay to neutron – smaller mass
•
Also p+
e+ + does not occur. WHY???
• 1938 Stuckelberg - Baryon no. conservation
• Baryon no. is conserved in Electromagnetic, weak and strong
interactions
So belongs
to baryon
family –
strange
baryon
19
• Strange particles
• Gell-Mann & Nishijima – Strangeness (S) - new Quantum number
like lepton no., baryon no. etc
• Strangeness is conserved in EM and Strong interactions but not
in weak interactions
Strangeness not conserved
K meson – S=+1
- Weak decay
and - S= -1
Strangeness – conserved
- Strong production
20
Isospin
• After correcting for the electromagnetic interaction, the forces
between nucleons (pp, nn, or np) in the same state are almost the
same.
• Equality between the pp and nn forces:
• Charge symmetry.
• Equality between pp/nnforce and np force:
• Charge independence.
• Better notation: Isospin symmetry;
• Strong interaction does not distinguish between n and p isospin
conserved in strong interaction
• BUT not in electromagnetic interaction
21
Conserved quantum numbers
22
Zoo is crowded
Too many inmates
order required
Periodic Table ~ 1960
23
The “Eightfold Way’’
-
Murray Gell-Mann and Yuval Ne’eman, 1961
Baryon octet
24
Meson Octet
25
Baryon
decuplet
- was predicted based on this arrangement and was discovered in
1964.
26
• Why do the hadrons (baryons and mesons) fit so beautifully????
•
Gell-Mann & Zewig proposed independently (1964)
•
Hadrons are composed of spin ½ QUARKS – comes in three
types or flavours
Every baryon (antibaryon) consist of 3 quarks (antiquark) and
each meson is composed of a quark and an antiquark
27
Quark
Charge
Up
+2/3
Mesons
qq
Down
-1/3
Strange
-1/3
K0
K+
ds
us
-
+
0
du
ud
uu,dd,ss
su
sd
K-
K0
28
Baryons (qqq) Decuplet
-
0
+
++
ddd
udd
uud
uuu
n
p
Conceptual problem?
0
dds
+
uus
uds
dss
uss
-
0
How can we have
uuu,ddd or sss state ???
Need for a new
quantum number
-
Colour Charge
sss
Proposed by O. W.Greenberg
All naturally occurring particles are colourless
29
Existence of quarks – experimental evidence
• e-p scattering
• For smaller energy transfer the scattering is elastic
• For moderate energy transfer proton gets excited
e p e e p 0
For Higher energies : Deep inelastic Scattering
Can One estimate the energy
Needed to probe proton???
Dimension –
Atom 10-10 m
proton – 1fm = 10-15m
Now use Uncertainty principle
30
• New Theory
Electrons – electric cherge - EM force – Photon
Quantum Electrodynamics
Quarks - Colour Charge - Strong force – Gluon
Quantum Chromodynamics
Quark – three colours - Red , Blue , Green
Gluons – eight - red + anti-blue and other combinations
Mesons – quark+antiquark – colour+anticolour – WHITE
31
Photons – No self Interaction
- Abelian theory (QED)
- interaction increases with
decreasing separation between
particles
Gluons – colour charge
- Self interacting
- Non-abelian theory (QCD)
- interaction decreases with
decreasing separation between
particles i.e quarks
32
33
34
Strong force
between protons
0 strong decay
decay
35
Story of quarks continues ….
• Quark family does not end with u,d and s
as lepton family does not end with e, e , µ, µ
• Bjorken and Glashow – fourth flavour of quark
charm c
• c c meson (called
J /
) was discovered in 1974
• In 1975 came the tau () lepton and it continued.
36
BS
Y
Q
I
I
3
3
2
2
Gell-mann-Nishijima-Nakano relation
Hypercharg e Y B S
~
In general Y B S C B T
For Baryons
Flavour
u
d
s
c
t
b
B=1
Charge
2/3
-1/3 -1/3 2/3 2/3 -1/3
If for any Baryon
I3
1/2
-1/2 0
0
0
0
Y≠1Hyperon
•
Inclusion of strangeness
Strangeness
0
0
-1
0
0
0
Charm
0
0
0
1
0
0
Top
0
0
0
0
1
0
Bottom
0
0
0
0
0
-1
Baryon No.
1/3
1/3
1/3
1/3
1/3
1/3
SU(2)
SU(3)
SU(4)
37
Periodic Table - Today
38
Leptons are colourless
39
All quarks come in three colours
40
Mediating particles (radiation)
The weak and electromagnetic interactions were unified by Glashow,
Salam and Weinberg
-predicted W and Z bosons with masses 80 GeV and 91 GeV
-Discovered in 1983
Together we have Standard Model of particle physics
41
Consequences of quark
structure
42
• Single Baryon
43
44
Hadronic matter Phase transition Quark matter
Strange Quark Matter (u,d & s ) Ground state of matter
First idea : Bodmer (1971)
Resurrected : Witten (1984)
Stable quark matter : Conflict with experience ????
2-flavour energy 3-flavour
Lowering due to extra Fermi well
Stable Quark Matter 3-flavour matter
Stable SQM significant amount s quarks
For nuclei high order of weak interaction to convert45 u
& d to s
Strangelet smaller lumps of
strange quark mater
SQM in bulk : charge neutrality with electrons
For A 107
SQM size < compton wavelength of electron
Electrons are not localized
nu = nd = ns
Net charge QSQM = 0 if ms = mu = md
But ms > mu or md
QSQM > 0 small + ve charge
46
SQM & Strangelet Search :
SQM :
1. Early universe quark-hadron phase transition
Quark nugget MACHO
2. Compact stars (Core of Neutron Stars or Quark Stars)
Strangelets :
1. Heavy Ion Collision
Short time
Much smaller size A ~ 10-20
Stability Problem ???
2. Cosmic Ray events :
Collision of Strange stars or other strange objects
47
SUMMARY
Thank You
48
Small
Fast
Classical
Mechanics
Quantum
Mechanics
Relativistic
Mechanics
Quantum
field theory
49