Transcript ppt
QM Reminder
C Nave @ gsu.edu
http://hyperphysics.phy-astr.gsu.edu/hbase/quacon.html#quacon
Outline
• Postulates of QM
• Picking Information Out of Wavefunctions
– Expectation Values
– Eigenfunctions & Eigenvalues
• Where do we get wavefunctions from?
– Non-Relativistic
– Relativistic
• What good-looking Ys look like
• Techniques for solving the Schro Eqn
– Analytically
– Numerically
– Creation-Annihilation Ops
Postulates of Quantum Mechanics
• The state of a physical system is completely described by a
wavefunction Y.
• All information is contained in the wavefunction Y
• Probabilities are determined by the overlap of
wavefunctions
Ya | Yb
2
Postulates of QM
• Every measurable physical quantity has a corresponding operator.
• The results of any individ measurement yields one of the
eigenvalues ln
of the corresponding operator.
• Given a Hermetian Op with eigenvalues ln and eigenvectors Fn ,
the probability of measuring the eigenvalue ln is
F
*
n
Y d r
3
2
or
Fn Y
2
Postulates of QM
• If measurement of an observable gives a result ln , then
immediately afterward the system is in state fn .
• The time evolution of a system is given by
• .
d
i Y H Y
dt
corresponds to
classical Hamiltonian
Picking Information out of
Wavefunctions
Expectation Values
Eigenvalue Problems
Common Operators
• Position
r = ( x, y, z )
- Cartesian repn
• Momentum
p i i ( x , y , z )
• Total Energy
E
i t
• Angular Momentum
op
tot
L=rxp
- work it out
Using Operators: A
• Usual situation: Expectation Values
A
Y * A Y d 3r
all space
• Special situations: Eigenvalue Problems
AY l Y
the original wavefn
a constant
(as far as A is concerned)
Expectation Values
• Probability Density at r
Y (rf ) Y(rf )
• Prob of finding the system in a region d3r about r
Y
Y d 3r
• Prob of finding the system anywhere
Y
all space
Y d 3r
1
• Average value of position r
Y
r Y d 3r
all space
• Average value of momentum p
Y
p Y d 3r
all space
• Expectation value of total energy
Y
all space
H Y d 3r
Eigenvalue Problems
Sometimes a function fn has a special property
Op
some const
fn
wrt the Op
eigenvalue
fn
eigenfn
Since this is simpler than doing integrals, we usually label QM systems
by their list of eigenvalues (aka quantum numbers).
Eigenfns: 1-D Plane Wave moving in +x direction
Y(x,t) = A sin(kx-wt) or A cos(kx-wt) or A ei(kx-wt)
• Y is an eigenfunction of Px
Px Y i x ei(kxw t )
k ei ( kx w t )
k Y
• Y is an eigenfunction of Tot E
Tot E
Y i t ei ( kx w t )
w ei ( kx w t )
• Y is not an eigenfunction of position X
XY
x ei ( kx w t )
xY
w Y
Eigenfns: Hydrogenic atom
•
Y is an eigenfunction of Tot E
Tot E
•
P2
Ynlm (rf ) H Ynlm (rf )
V Ynlm (rf )
2m
mZ 2 e 4
1
Z2
Ynlm (rf ) 2 13.6 Ynlm (rf )
2
2
2
(4o ) 2 n
n
Y is an eigenfunction of
L2 Ynlm (rf )
L z Ynlm (rf )
•
Ynlm(r,,f)
L2
and Lz
( 1) 2 Ynlm (rf )
m 2 Ynlm (rf )
Y is an eigenfunction of parity
Parity Ynlm (rf ) () Ynlm (rf )
units eV
Eigenfns: Hydrogenic atom
Ynlm(r,,f)
• Y is not an eigenfn of position X, Y, Z
• Y is not an eigenfn of the momentum vector Px , Py , Pz
• Y is not an eigenfn of
Lx and Ly
Where Wavefunctions come from
Where do we get the wavefunctions from?
• Physics tools
– Newton’s equation of motion
– Conservation of Energy
– Cons of Momentum & Ang Momentum
The most powerful and easy to use technique is Cons NRG.
Schrödinger Wave Equation
Use non-relativistic formula for Total Energy Ops
H
KE V
p2
V
2m
and
op
Etot
Y(r, t ) i t
Y(r, t )
p2
V Y(r, t ) i t
2m
Y(r, t )
2 2
V Y(r, t ) i t
2m
Y(r, t )
H
i t
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians
Klein-Gordon Wave Equation
Start with the relativistic constraint for free particle:
Etot2 – p2c2 = m2c4 .
p2 = px2 + py2 + pz2
[ Etot2 – p2c2 ] Y(r,t) = m2c4 Y(r,t).
(i )
2
t
( i ) c 2
2
Y(r, t ) m2c 4
a Monster to solve
Y(r, t )
Dirac Wave Equation
Wanted a linear relativistic equation
Etot2 – p2c2 = m2c4
p = ( px , py , pz )
[ Etot2 – p2c2 m2c4 ] Y(r,t) = 0
Change notation slightly
op
p0 Etot
/ c i t
c
P4 = ( po , ipx , ipy , ipz )
~
[P42c2 m2c4 ] Y(r,t) = 0
difference of squares can be factored ~ ( P4c + mc2) (P4c-mc2)
and there are two options for how to do overall +/- signs
4 coupled equations to solve.
Time Dependent Schro Eqn
d
i Y H Y
dt
Where H = KE + Potl E
Y(x, t )
ER 5-5
Time Dependent Schro Eqn
d
i Y H Y
dt
Where H = KE + Potl E
p2
V Y(r, t ) i t
2m
Y(r, t )
2 2
V Y(r, t ) i t
2m
Y(r, t )
Y(x, t )
Time Independent Schro Eqn
KE involves spatial derivatives only
If Pot’l E not time dependent, then Schro Eqn separable
Y(x, t ) (x)
f (t )
ref: Griffiths 2.1
Y(x, t ) (x ) e
iEt /
2 2
V Y(r, t ) i t
2m
2 2
V Y(r ) Etot
2m
Y(r, t )
Y(r )
Drop to 1-D for ease
2 2
x V (x ) Y(x ) Etot
2m
Y(x )
ER 5-6
What Good Wavefunctions Look
Like
Sketching Pictures of Wavefunctions
Prob ~ Y* Y
KE
KE
+ V
=
Etot
V (x ) Y(x ) Etot
Y(x )
p2
V (x ) Y(x ) Etot
2m
Y(x )
2 2
x V (x ) Y(x ) Etot
2m
Y(x )
Bad Wavefunctions
Sketching Pictures of Wavefunctions
2 2
x V (x ) Y(x ) Etot
2m
Y(x )
To examine general behavior of wave fns, look for soln of the form
Y
Ae
ik x
where k is not necessarily a constant
(but let’s pretend it is for a sec)
2k 2
2m
k
V
Etot
2m
(Etot V )
2
KE
Y
k
Ae
ik x
2m
(Etot V )
2
KE
KE +
If Etot > V, then k Re
If Etot < V, then k Im
Y ~ kinda free particle
Y ~ decaying exponential
2/k ~ l ~ wavelength
1/k ~ 1/e distance
Sample Y(x) Sketches
•
•
•
•
Free Particles
Step Potentials
Barriers
Wells
Free Particle
Energy axis
V(x)=0 everywhere
1-D Step Potential
1-D Finite Square Well
1-D Harmonic Oscillator
1-D Infinite Square Well
1-D Barrier
NH3 Molecule
E&R Ch 5 Prob 23
Discrete or Continuous Excitation Spectrum ?
E&R Ch 5,
Prob 30
Which well goes with wfn ?
Techniques for solving the Schro Eqn.
• Analytically
– Solve the DiffyQ to obtain solns
• Numerically
– Do the DiffyQ integrations with code
• Creation-Annihilation Operators
– Pattern matching techniques derived from 1D SHO.
Analytic Techniques
• Simple Cases
– Free particle (ER 6.2)
– Infinite square well (ER 6.8)
• Continuous Potentials
– 1-D Simple Harmonic Oscillator (ER 6.9, Table 6.1, and App I)
– 3-D Attractive Coulomb (ER 7.2-6, Table 7.2)
– 3-D Simple Harmonic Oscillator
• Discontinuous Potentials
– Step Functions (ER 6.3-7)
– Barriers (ER6.3-7)
– Finite Square Well (ER App H)
Eigenfns: Bare Coulomb - stationary states
Ynlm(r,,f) or Rnl(r) Ylm(,f)
Simple/Bare
Coulomb
Numerical Techniques
ER 5.7, App G
• Using expectations of what the wavefn should look like…
–
–
–
–
–
–
–
–
–
Numerical integration of 2nd order DiffyQ
Relaxation methods
..
..
Joe Blow’s idea
Willy Don’s idea
Cletus’ lame idea
..
..
SHO Creation-Annihilation Op
Techniques
Define:
aˆ
1
2mw
aˆ
( ipˆ mw xˆ )
1
( ipˆ mw xˆ )
2mw
aˆ, aˆ 1
x, pˆ i
H w ( a a 12 )
pˆ 2 1 2
kx
2m 2
If you know the gnd state wavefn Yo, then the nth excited state is:
(aˆ )
n
Yo
Inadequacy of Techniques
• Modern measurements require greater accuracy in
model predictions.
– Analytic
– Numerical
– Creation-Annihilation (SHO, Coul)
• More Refined Potential Energy Fn: V()
– Time-Independent Perturbation Theory
• Changes in the System with Time
– Time-Dependent Perturbation Theory