7.6 Exploration: Trig Identities

Download Report

Transcript 7.6 Exploration: Trig Identities

7.6 Exploration:
Trig Identities
Honors Analysis
Learning Target: I can
develop trigonometric
identities
Identity #1:
Using either the right triangle or
coordinate definition, find a simplified
relationship for the ratio:
sin π‘₯
cos π‘₯
Identity #2:
ο‚› Evaluate
each of the following:
sin2 30° + cos 2 30°
sin2 45° + cos 2 45°
sin2 60° + cos 2 60°
sin2 90° + cos 2 90°
Conclusion: 𝑠𝑖𝑛2 π‘₯ + π‘π‘œπ‘  2 π‘₯ =? ?
Proof of Pythagorean Identity:
2
2
𝑠𝑖𝑛 πœƒ + π‘π‘œπ‘  πœƒ = 1
ο‚› Use
the triangle below to prove the
identity shown above. Hint: How can the
hypotenuse be labeled using a and b?
Deriving the
Pythagorean Identities:
ο‚› Divide the equation 𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘  2 πœƒ
𝑠𝑖𝑛2 πœƒ and simplify where possible.
the result?
= 1 by
What is
𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘  2 πœƒ = 1 by π‘π‘œπ‘  2 πœƒ and
simplify where possible. What is the result?
ο‚› Divide
Trig Identities Summary:
1.)
sin π‘₯
cos π‘₯
= tan π‘₯
2.) 𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘  2 πœƒ = 1
3.) π‘‘π‘Žπ‘›2 πœƒ + 1 = 𝑠𝑒𝑐 2 πœƒ
4.) π‘π‘œπ‘‘ 2 πœƒ + 1 = 𝑐𝑠𝑐 2 πœƒ
Simplify:
ο‚› sin πœƒ (csc πœƒ
ο‚› 𝑠𝑖𝑛2 πœƒ
βˆ’ sin πœƒ)
π‘π‘œπ‘‘ 2 πœƒ
𝑐𝑠𝑐 2 πœƒβˆ’π‘π‘œπ‘‘ 2 πœƒ
ο‚›
1βˆ’π‘π‘œπ‘  2 πœƒ
π‘π‘œπ‘ πœƒ
ο‚›
1βˆ’sin πœƒ
βˆ’
ο‚› βˆ’5𝑠𝑖𝑛3 π‘₯
cos πœƒ
1+sin πœƒ
βˆ’ 5 sin π‘₯ π‘π‘œπ‘  2 π‘₯
Strategies for simplifying
trigonometric expressions
ο‚› Write
trig functions in term of sin/cos/tan
ο‚› Look for Pythagorean identities (may
need to factor out GCF to find)
ο‚› Fractions: Find a common denominator &
combine
ο‚› Fractions: Break up a sum/difference in
the numerator as two fractions with the
same denominator
Verify the trig identity
sin π‘₯ + csc π‘₯ = 1
Verify the trig identity:
1
1
+
=1
2
2
𝑠𝑒𝑐 πœƒ 𝑐𝑠𝑐 πœƒ
Verify the trig identity:
cos π‘₯
tan π‘₯ =
sin π‘₯ π‘π‘œπ‘‘ 2 π‘₯
Verify the trig identity:
2
1 + π‘‘π‘Žπ‘› πœƒ
2
=
π‘‘π‘Žπ‘›
πœƒ
𝑐𝑠𝑐 2 πœƒ
Trig Identity Tips
ο‚› Make
obvious replacements
ο‚› Convert reciprocal functions to
sin/cos/tan where possible
ο‚› If factored, multiply out
ο‚› If not factored, factor out GCF
ο‚› Try converting all values to sin/cos form
ο‚› If there is a sum or difference in the
numerator, split it up into two fractions
(CAREFUL!! You can’t split up denom!)
ο‚› Sum/difference of fractions – find
common denominator and add
Multiple Angle Identities
Sum/Difference
sin 𝛼 + 𝛽 = sin 𝛼 π‘π‘œπ‘ π›½ + sin 𝛽 cos 𝛼
sin 𝛼 βˆ’ 𝛽 = sin 𝛼 π‘π‘œπ‘ π›½ βˆ’ sin 𝛽 cos 𝛼
sin 𝛼 ± 𝛽 = sin 𝛼 π‘π‘œπ‘ π›½ ± sin 𝛽 cos 𝛼
cos 𝛼 + 𝛽 = cos 𝛼 cos 𝛽 βˆ’ sin 𝛼 sin 𝛽
cos 𝛼 + 𝛽 = cos 𝛼 cos 𝛽 βˆ’ sin 𝛼 sin 𝛽
cos 𝛼 ± 𝛽 = cos 𝛼 cos 𝛽 βˆ“ sin 𝛼 sin 𝛽
How could you find tangent of a sum??
Multiple Angle Identities
ο‚› sin 2πœƒ
= 2 sin πœƒ cos πœƒ
= π‘π‘œπ‘  2 πœƒ βˆ’ 𝑠𝑖𝑛2 πœƒ
ο‚› cos 2πœƒ = 1 βˆ’ 2 𝑠𝑖𝑛2 πœƒ
ο‚› cos 2πœƒ = 2π‘π‘œπ‘  2 πœƒ βˆ’ 1
ο‚› cos 2πœƒ
Simplify
ο‚› cos
ο‚› sin
ο‚›2
20 cos 40 – sin 20 cos 40
10 cos 40 + sin 40 cos 10
sin 50 cos 50
ο‚› 1 βˆ’ 2 𝑠𝑖𝑛2 40
Evaluate:
ο‚› sin 75°
ο‚› cos 15°
ο‚› cos 105°
3
5
3
,
5
ο‚› If
sin 𝛼 = , find sin 2𝛼.
ο‚› If
sin 𝛼 =
find cos 2𝛼.
Ch. 7 Test Review: Identities
Simplify:
cos π‘₯ βˆ’ cos π‘₯ 𝑠𝑖𝑛2 π‘₯
Simplify:
sec π‘₯ + cos π‘₯
sec π‘₯
Simplify:
sin π‘₯ cot π‘₯
Simplify:
Simplify:
Simplify:
Simplify:
Simplify: