7.6 Exploration: Trig Identities
Download
Report
Transcript 7.6 Exploration: Trig Identities
7.6 Exploration:
Trig Identities
Honors Analysis
Learning Target: I can
develop trigonometric
identities
Identity #1:
Using either the right triangle or
coordinate definition, find a simplified
relationship for the ratio:
sin π₯
cos π₯
Identity #2:
ο Evaluate
each of the following:
sin2 30° + cos 2 30°
sin2 45° + cos 2 45°
sin2 60° + cos 2 60°
sin2 90° + cos 2 90°
Conclusion: π ππ2 π₯ + πππ 2 π₯ =? ?
Proof of Pythagorean Identity:
2
2
π ππ π + πππ π = 1
ο Use
the triangle below to prove the
identity shown above. Hint: How can the
hypotenuse be labeled using a and b?
Deriving the
Pythagorean Identities:
ο Divide the equation π ππ2 π + πππ 2 π
π ππ2 π and simplify where possible.
the result?
= 1 by
What is
π ππ2 π + πππ 2 π = 1 by πππ 2 π and
simplify where possible. What is the result?
ο Divide
Trig Identities Summary:
1.)
sin π₯
cos π₯
= tan π₯
2.) π ππ2 π + πππ 2 π = 1
3.) π‘ππ2 π + 1 = π ππ 2 π
4.) πππ‘ 2 π + 1 = ππ π 2 π
Simplify:
ο sin π (csc π
ο π ππ2 π
β sin π)
πππ‘ 2 π
ππ π 2 πβπππ‘ 2 π
ο
1βπππ 2 π
πππ π
ο
1βsin π
β
ο β5π ππ3 π₯
cos π
1+sin π
β 5 sin π₯ πππ 2 π₯
Strategies for simplifying
trigonometric expressions
ο Write
trig functions in term of sin/cos/tan
ο Look for Pythagorean identities (may
need to factor out GCF to find)
ο Fractions: Find a common denominator &
combine
ο Fractions: Break up a sum/difference in
the numerator as two fractions with the
same denominator
Verify the trig identity
sin π₯ + csc π₯ = 1
Verify the trig identity:
1
1
+
=1
2
2
π ππ π ππ π π
Verify the trig identity:
cos π₯
tan π₯ =
sin π₯ πππ‘ 2 π₯
Verify the trig identity:
2
1 + π‘ππ π
2
=
π‘ππ
π
ππ π 2 π
Trig Identity Tips
ο Make
obvious replacements
ο Convert reciprocal functions to
sin/cos/tan where possible
ο If factored, multiply out
ο If not factored, factor out GCF
ο Try converting all values to sin/cos form
ο If there is a sum or difference in the
numerator, split it up into two fractions
(CAREFUL!! You canβt split up denom!)
ο Sum/difference of fractions β find
common denominator and add
Multiple Angle Identities
Sum/Difference
sin πΌ + π½ = sin πΌ πππ π½ + sin π½ cos πΌ
sin πΌ β π½ = sin πΌ πππ π½ β sin π½ cos πΌ
sin πΌ ± π½ = sin πΌ πππ π½ ± sin π½ cos πΌ
cos πΌ + π½ = cos πΌ cos π½ β sin πΌ sin π½
cos πΌ + π½ = cos πΌ cos π½ β sin πΌ sin π½
cos πΌ ± π½ = cos πΌ cos π½ β sin πΌ sin π½
How could you find tangent of a sum??
Multiple Angle Identities
ο sin 2π
= 2 sin π cos π
= πππ 2 π β π ππ2 π
ο cos 2π = 1 β 2 π ππ2 π
ο cos 2π = 2πππ 2 π β 1
ο cos 2π
Simplify
ο cos
ο sin
ο2
20 cos 40 β sin 20 cos 40
10 cos 40 + sin 40 cos 10
sin 50 cos 50
ο 1 β 2 π ππ2 40
Evaluate:
ο sin 75°
ο cos 15°
ο cos 105°
3
5
3
,
5
ο If
sin πΌ = , find sin 2πΌ.
ο If
sin πΌ =
find cos 2πΌ.
Ch. 7 Test Review: Identities
Simplify:
cos π₯ β cos π₯ π ππ2 π₯
Simplify:
sec π₯ + cos π₯
sec π₯
Simplify:
sin π₯ cot π₯
Simplify:
Simplify:
Simplify:
Simplify:
Simplify: