Sum and Difference Formulas
Download
Report
Transcript Sum and Difference Formulas
Sum and Difference
Formulas
New Identities
Cosine Formulas
cos cos cos sin sin
cos cos cos sin sin
Sine Formulas
sin sin cos cos sin
sin sin cos cos sin
Tangent Formulas
tan tan
tan
1 tan tan
tan tan
tan
1 tan tan
Using Sum Formulas to Find Exact
Values
Find the exact value of cos 75o
cos 75o = cos (30o + 45o)
cos 30o cos 45o – sin 30o sin 45o
3 2 1 2
2 2 2 2
6 2
1
or
6 2
4
4
Find the Exact Value
Find the exact value of
7
sin
12
Change to degrees first (easier to find angles)
7 180
105
12
sin(105 ) sin 60 45
sin 60 cos 45 sin 45 cos 60
1 2
2 3
2
6 1
or
2 2
2 2
4
4
4
2 6
Exact Value
Find the exact value of tan 195o
tan 45 tan150
tan(45 150 )
1 tan 45 tan150
1
1
1
1
3
3
3
1
1
3
1 1
1 1
3
3
3 1
3 1
Using Difference Formula to Find
Exact Values
Find the exact value of
sin 80o cos 20o – sin 20o cos 80o
This is the sin difference identity so . . .
sin(80o
–
20o)
= sin
(60o)
=
3
2
Using Difference Formula to Find
Exact Values
Find the exact value of
cos 70o cos 20o – sin 70o sin 20o
This is just the cos difference formula
cos (70o + 20o) = cos (90o) = 0
Finding Exact Values
4
If it is known that sin = , , and that
5 2
2
3
sin =
,
, find the exact value of
2
5
a. cos ( + )
b. sin ( + )
c. tan ( )
Establishing an Identity
Establish the identity:
cos( )
cot cot 1
sin sin
cos cos sin sin
cot cot 1
sin sin
cos cos sin sin
cot cot 1
sin sin sin sin
cot cot 1 cot cot 1
Establishing an Identity
Establish the identity
cos ( cos ( – 2 cos cos
Solution
cos ( cos ( – 2 cos cos
cos cos – sin sin + cos cos sin sin
cos cos cos cos 2 cos cos
2 cos cos = 2 cos cos
Establishing an Identity
Prove the identity:
tan (q = tan q
Solution
tan q tan
tan(q )
1 tan q tan
tan q 0
1 tan q tan 0
tan q
tan q
1
Establishing an Identity
Prove the identity:
tan q cot q
2
Solution
Since tan
2
sinq
tan q =
cosq
is undefined we have to use the identity
sin q sin q cos cos q sin
2
2
2
tan q
2
cos q cos q cos sin q sin
2
2
2
sin q 0 cos q 1 cos q
cot q
cos q 0 sin q 1 sin q
Finding Exact Values Involving
Inverse Trig Functions
Find the exact value of:
Solution
Think of this equation as the cos (
Remember that the answer to an inverse
trig question is an angle).
So . . . is in the 1st quadrant and is in
the 4th quadrant (remember range)
Solution
cos( ) cos cos sin sin
5
tan
12
5 y
tan
12 x
y 5; x 12 need r
3
sin
5
3 y
sin
5 r
y 3;
r 5 need x
r 12 5
5 x 3
1
2
2
1
2
2
r 144 25 13
25 x 9
12
5
cos ; sin
13
13
4
cos
5
2
2
16 x
2
x4
Solution
12 4 5 3
cos
13 5 13 5
48 15
65 65
33
65
Writing a Trig Expression as an
Algebraic Expression
Write sin (sin-1u + cos-1v) as an
algebraic expression containing u and
v (without any trigonometric functions)
Again, remember that this is just a
sum formula
sin ( = sin cos + sin cos
Solution
Let sin-1u = and cos-1v =
Then sin u and cos = v
cos 1 sin 2 1 u 2
sin 1 cos 2 1 v 2
So
sin(sin 1 u cos 1 v) sin
sin cos cos sin
uv 1 u 2 1 v 2
On-line Help
Tutorials
Videos