The Implementation of Artificial Intelligence and Temporal
Download
Report
Transcript The Implementation of Artificial Intelligence and Temporal
The Implementation of Artificial
Intelligence and Temporal
Difference Learning Algorithms in
a Computerized Chess Program
By James Mannion
Computer Systems Lab 08-09
Period 3
Abstract
Searching through large sets of data
Complex, vast domains
Heuristic searches
Chess
Evaluation Function
Machine Learning
Introduction
Games
Minimax search
Alpha-beta pruning
Only look 2-3 moves into the future
Estimate strength of position
Evaluation function
Can improve heuristic by learning
Introduction
Seems simple, but can become quite complex.
Chess masters spend careers learning how to
“evaluate” moves
Purpose: can a computer learn a good
evaluation function?
Background
Claude Shannon, 1950
Brute force would take too long
Discusses evaluation function
2-ply algorithm, but looks further into the future
for moves that could lead to checkmate
Possibility of learning in distant future
Development
Python
Stage 1: Text based chess game
Two humans input their moves
Illegal moves not allowed
Development
Development
Development
Development
•
Stage 2: Introduce a computer player
•
2-3 ply
•
Evaluation function will start out such that
choices are based on a simple piecedifferential where each piece is waited equally
Development
Stage 3: Learning
Temporal Difference Learning
Weight adjustment:
w ← w + a*(Pt - Pt-1)*∂wPt-1
a = 200/(199 + n)
P = 1/(1 + e-h)
h = w1(j1 – k1) + … + w5(j5 – k5)
Testing
Learning vs No Learning
Two equal, piece-differential players pitted
against each other.
One will have the ability to learn
Multiple Games
Weight values and win-loss differential
tracked over the length of the test
Results
Change In Weights Over Time
5
4
Weight
3
Pawn
Knight
Bishop
Rook
Queen
2
1
0
1
9
17
25 33
41
49 57 65 73
-1
Turns Taken (10 turns)
81
89 97 105
Results
Win Percentage Over Time
1
0.9
Win Percentage
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
5
10
Games Played
15
Results
•
•
•
•
•
Weights changed
This affected performance
Equilibrium values reached
Program actually got worse at chess
Probably due to code error
References
Shannon, Claude. “Programming a Computer
for Playing Chess.” 1950
Beal, D.F., Smith, M.C. “Temporal Difference
Learning for Heuristic Search and Game
Playing.” 1999
Moriarty, David E., Miikkulainen, Risto.
“Discovering Complex Othello Strategies
Through Evolutionary Neural Networks.”
Huang, Shiu-li, Lin, Fu-ren. “Using TemporalDifference Learning for Multi-Agent
Bargaining.” 2007