Transcript Metrology

INC 681 Optical Metrology
Moiré Techniques
24/09/05
Wiroj Sudatham
Metrology Engineering
INC 681 Optical Metrology
Moiré Techniques
Scope
• Introduction to Moiré Metrology
• Techniques Used in Moiré Metrology
• Applications
• Summary
INC 681 Optical Metrology
Introduction to Moiré Metrology
Introduction
Metrology :
The science of weights and measures.
Light :
Particles
Wave
An electromagnetic periodic perturbation
propagation in space at a constant velocity.
INC 681 Optical Metrology
Introduction to Moiré Metrology
Historical Background
17th
: Robert
Hooke
1870s
: Albert
Abraham
1629-95 : Christian
Huygens
Michelson
Michelson
19th
: ThomasInterferometer
Young
later
: James C. Maxwell
INC 681 Optical Metrology
Introduction to Moiré Metrology
Moiré Effect and Interferometry
• Superposition
• Interference
• Coherence
Moiré Effect : any source of light can be used.
Interferometry : base on mutual temporal
coherence.
INC 681 Optical Metrology
Introduction to Moiré Metrology
Analysis of The Moiré Pattern
X
n
y cos  / 2  x sin   np
y cos  / 2   x sin   mp
k=12345…
n  0,  1,  2...
p 
p

m  0,  1,  2...
lp
x
2 sin  / 2
lp
x
m
Y
P
Ronchi ruling

INC 681 Optical Metrology
Introduction to Moiré Metrology
Moiré pattern response to grating’s deformations
p

p
p
Case1 : Shifted
y cos  / 2  x sin  / 2   p  np
y cos  / 2   x sin  / 2  np
p
( m  n) p
lp  p
x

 
2 sin  / 2 2 sin  / 2 

INC 681 Optical Metrology
Introduction to Moiré Metrology
Moiré pattern response to grating’s deformations
Case2 : Rotated
y cos( / 2   )  x sin(  / 2   )  np
y cos  / 2   x sin  / 2   p  np
lp
lp
x

2 sin((    ) / 2)   
INC 681 Optical Metrology
Introduction to Moiré Metrology
Moiré pattern response to grating’s deformations
Case3 : Beats Phenomenon
I A
2
2
2
A  A01
 A02
 2 A01 A02 cos( 1   2 )
2
 1
1
A  A  A  2 A01 A02 cos 2ct   
 2 1 
y  np2
y  mp1 p1  kp2
2
2
01
2
02
 1
1 
l  y
 
 p2 p1 
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Techniques Used in Moiré Metrology
Moiré Method
Fringe quality
improvement and Fringe
readout techniques
Extraction
Information
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Fringe Quality Improvement And
Readout Techniques
Grating’s Stripes Multiplication and Addition
Multiplication
The fringe result from multiplication of the
transition functions of two grating and they
occur when the two grating are superimposed.
Stripes multiplication reduces the number of
fringe with out any loss in the accuracy.
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Fringe Quality Improvement And
Readout Techniques
Grating’s Stripes Multiplication and Addition
Addition
Collimated beam
Collimated beam
G1
G2
Object
Stripes addition setup.
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Fringe Quality Improvement And
Readout Techniques
Grating’s Stripes Multiplication and Addition
 2
t1 ( x, y )  a  a cos
 p
Multiplication
t ( x, y)  t1t 2

x 

x

t 2 ( x, y)  a  a cos 2    ( x) 
p

Addition
t ( x, y)  t1  t 2
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Fringe Quality Improvement And
Readout Techniques
Spatial filtering
Spatial filtering removes the high spatial frequency
and leaves only the moiré pattern.
Phase Shift Fringe Readout Method
One of the fringes is move by 1/3 of its pitch.
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Information Extraction
Mapping f(x,y)
Distorted Gratings general form:
y  f i ( x, y)  np
i  1, 2, 3.. n  0,  1  2...
f i ( x, y) is the measured quantity
Mapping
y  f ( x, y )  np
y  mp
f ( x, y )  lp l  m  n
A contour map of incremented by p
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Information Extraction
Mapping of Difference
Two functions are difference :
y  f1 ( x, y)  np
y  f 2 ( x, y)  mp
f1 ( x, y)  f 2 ( x, y)  lp
This result is a contour of the difference between
the two function which incremented by
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Information Extraction
Mapping The Sum
x
f 1 ( x, y )
 p
 n 
 
x
f 2 ( x, y )
 p
 l  l  n  m
 


The sum of the finite fringe is the contour map:
f1 ( x, y)  f 2 ( x, y)  mp
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Information Extraction
Multiplication by Factor
y  f ( x, y)  np1
y  mp2
p1  p2
y  f ( x, y ) y
l  mn 

p1
p2
Beats pitch :
1
1
1


p p1 p 2
y  Mf ( x, y )  lp
where
M  p / p1
INC 681 Optical Metrology
Techniques Used in Moiré Metrology
Information Extraction
Weighted Sums and Difference
y  f1 ( x, y)  np1
y  f 2 ( x, y)  mp2
p
p
y
f 1 ( x, y ) 
f 2 ( x, y )  lp
p1
p2
INC 681 Optical Metrology
Application
Applications
Shadow Moiré
Collimated beam
Observer
Grating
z

Object
x
y
Shadow moiré setup
INC 681 Optical Metrology
Application
Applications
Shadow Moiré
y  mp
y  h( x, y ) tan   np
shadow.  parallel
• Moiré pattern
• Contour phase constant difference
INC 681 Optical Metrology
Application
Applications
Shadow Moiré
y  mp
y  h( x, y ) tan   np
where h( x, y ) tan  0
h( x, y ) tan   (n  m) p
h( x, y )  lp cot 
INC 681 Optical Metrology
Application
Applications
Moiré Analysis of Strain
Observer
f ( x, y )
f ( x   x, y   y )
distorted
Measured surface
INC 681 Optical Metrology
Application
Applications
Moiré Analysis of Strain
 ( x, y )  np
 ( x, y   y )  mp
 ( x, y   y )   ( x, y )  lp
 ( x, y   y)   ( x, y)   lp




y

 y  y
INC 681 Optical Metrology
Summary
Moiré techniques
Metrology
• Introduction
Light
• Techniques
• Applications
Improvement
Extraction Information
Shadow moiré
Metrology
Etc.
INC 681 Optical Metrology
Reference
Kjell J. Gasvik, (1995) JHON WILEY&SON 2nd,
“OPTICAL METROLOGY”, 161-76.
DR. ODED KAFRI and DR. ILANA GLATT, (1989)
JHON WILEY&SON, “The Physics of Moiré Metrology”.
Thanks
น.อ. สหพงษ์ เครื อเพ็ชร รน.
for a good advice.