electronics communications(ekt313)
Download
Report
Transcript electronics communications(ekt313)
ELECTRONICS
COMMUNICATIONS(EKT313)
Lecturers : 1.Pn Sahadah binti Ahmad
2.Dr.Mohd Fareq bin Malek
3. Pn Sharifah Zarihan (PLV)
Contact #: 1. 017 5722339/04 9852605
2. 016 5219769/04 985
3. 012 4539120/04 9852721
Email : [email protected]
[email protected]
[email protected]
EKT313
Sem: 1 2011/2012
Meeting: Lecture 3 Hours @ DK
Lab 2 Hours / 2 sessions @
MKR 3 & MKY 7
Attendance are compulsory!!
Course Outcomes (CO)
CO1: Ability to utilize software and simulation tools in designing
systems in communications .
CO2: Ability to analyze transmission of the signal through
channels, noise and modulation.
CO3: Ability to identify, analyze and design the architecture of
radio frequency , amplifiers, mixers, AM and FM
modulators and demodulators, transmitter circuits and
receiver circuits.
CO4: Ability to perform measurement, analyze output signal
and trouble shoot using laboratory equipments /
instruments.
SYNOPSIS
OBJECTIVES:
This subject introduces the students about the
design and electronics used in communication
system. This includes the design and architecture
of radio frequency amplifiers, mixers, AM and FM
modulators and demodulators, transmitter
circuits and receiver’s circuits. It is also to give
introduction to students about how to analyze
circuit and its importance in communication
electronic field.
SYNOPSIS
TOPICS COVERED ARE:
Introductions to Electronics Communications,
AM& SSB Modulations & AM Circuits,
FM and FM Circuits,
Radio Transmitter and
Communications Receivers
Transmission Lines
SYNOPSIS
Practical:
Designing and constructing of Radio
Frequency (RF) Receiver architecture, i.e.
modulator, demodulator, oscillator, filters,
down converters, etc using software and
hardwares.
Software : ADS 2009
ASSESSMENTS
Final exam = 50%
Test 1 & 2 = 20%
Lab
= 30%
5% presentation
5% Report
20% Project
List of text books and references
[1] Louis E. Frenzel Jr, Principles of
Electronic Communication Systems , 3rd
Ed., McGrawHill 2008. (text)
[2] Wayne Tomasi, Electronics
Communication Systems, Prentice Hall
[3] Paul Young, Electronics
Communications Techniques,
LECTURE 1
REVIEW TO COMMUNICATION
SYSTEMS
PART 1
WHAT DO YOU UNDERSTAND
of
COMMUNICATION SYSTEM?
DEFINITIONS OF
COMMUNICATIONS
Humans exchanging information
Machines exchanging information
Conveying thoughts, feelings,
ideas, and facts
Sending and receiving information
by electronic means
BARRIERS TO
COMMUNICATIONS
Language: human,
computer, or electronic
Distance: space between
sending and receiving
parties
COMMON FORMS OF
COMMUNICATIONS
Human voice: face-to-face conversations,
public speakers, actors in plays, etc.
Audio: CDs, tape, records, radio
Body language: non-verbal
Print: newspapers, magazines, books, etc.
Film: still and movie
Video: movies, graphics and animation
Music: personal, concerts
FORMS OF ELECTRONIC
COMMUNICATIONS
Radio and TV broadcasting
Telephone, wired and wireless
Fax
Pagers
Computer networks: modem, email, Internet and World Wide
Web, wireless
Satellites, radar, radio telescopes
MODEL OF ALL
COMMUNICATIONS SYSTEMS
Transmitter
TX
Channel
Communications
medium
Noise
Information to be
transmitted
Receiver
RX
Received
information
Model of all communication
systems
Basic components:
Transmitter
Channel or medium
Receiver
Noise degrades or
interferes with transmitted
information.
Communication Systems
Transmitter
The transmitter is a collection of electronic
components and circuits that converts the electrical
signal into a signal suitable for transmission over a
given medium.
Transmitters are made up of oscillators, amplifiers,
tuned circuits and filters, modulators, frequency
mixers, frequency synthesizers, and other circuits.
Communication Systems
Communication Channel
The communication channel is the
medium by which the electronic signal is
sent from one place to another.
Types of media include
Electrical conductors
Optical media
Free space
System-specific media (e.g., water is the medium for
sonar).
Communication Systems
Receivers
A receiver is a collection of electronic
components and circuits that accepts the
transmitted message from the channel and
converts it back into a form understandable by
humans.
Receivers contain amplifiers, oscillators, mixers,
tuned circuits and filters, and a demodulator or
detector that recovers the original intelligence
signal from the modulated carrier
Communication Systems
Transceivers
A transceiver is an electronic unit that
incorporates circuits that both send and
receive signals.
Examples are:
•
•
•
•
•
Telephones
Fax machines
Handheld CB radios
Cell phones
Computer modems
Communication Systems
Noise
Noise is random, undesirable electronic
energy that enters the communication
system via the communicating medium and
interferes with the transmitted message.
TYPES OF
COMMUNICATIONS
TX
Channel
TX
RX
RX
Channel(s)
RX
TX
Simplex:
One-way
Duplex:
Two-way
Half duplex:
Alternate TX/RX
Full duplex:
Simultaneous
TX/RX
TYPES OF COMMUNICATIONS
SIGNALS
Analog - smooth and continuous voltage variation.
Digital - binary or two voltage levels.
Time
COMMUNICATIONS
SIGNAL VARIATIONS
Baseband - The original
information signal such as audio,
video, or computer data. Can be
analog or digital.
Broadband - The baseband signal
modulates or modifies a carrier
signal, which is usually a sine
wave at a frequency much higher
than the baseband signal.
MODULATION
An electronic technique in which a
baseband information signal
modifies a carrier signal (usually a
sine wave) for the purpose of
frequency translation and carrying
the information signal via radio.
The common types of modulation
are amplitude, frequency and phase.
Modulation at the transmitter
AMPLITUDE MODULATION
The modulating (baseband) signal is a sinusoid in this example.
High-frequency carrier
An AM signal as it usually
appears on an oscilloscope
The carrier frequency is normally much
higher than the baseband frequency.
FREQUENCY MODULATION
The baseband signal controls the carrier’s frequency
and the carrier’s amplitude remains constant.
Carrier
Resting fc
Increasing fc
Decreasing fc
Increasing fc
Resting fc
Modulating signal
FM
MULTIPLEXING
Multiplexing (MUX or MPX) - the
Demultiplexing (DEMUX or DMPX) - the
process of simultaneously transmitting
two or more baseband information
signals over a single communications
channel.
process of recovering the individual
baseband signals from the multiplexed
signal.
MULTIPLEXING AND
DEMULTIPLEXING
Single communications channel (radio or cable)
MUX
Original baseband
information signals
DEMUX
Recovered baseband
information signals
Modulation and Multiplexing
ELECTRONIC COMMUNICATIONS
APPLICATIONS
Radio broadcasting (AM & FM)
Television broadcasting (analog &
DTV)
Cable TV
Wireless remote control
Paging
Navigation and direction finding
Telemetry
ELECTRONIC COMMUNICATIONS
APPLICATIONS (Continued)
Radio astronomy
Surveillance
RF identification (ID)
Music services
Telephones (wired, cordless,
cellular)
Facsimile
Two-way radio
ELECTRONIC COMMUNICATIONS
APPLICATIONS (Continued)
Radar
Sonar
Amateur radio
Citizens and family radio
Data communications
Networks
Internet and World Wide
Web
FREQUENCY AND WAVELENGTH
Cycle - One complete occurrence of a
repeating wave (periodic signal) such
as one positive and one negative
alternation of a sine wave.
Frequency - the number of cycles of a
signal that occur in one second.
Period - the time distance between two
similar points on a periodic wave.
Wavelength - the distance traveled by
an electromagnetic (radio) wave during
one period.
PERIOD AND FREQUENCY
COMPARED
T = One period
time
One cycle
Frequency = f = 1/T
Frequency and wavelength compared
+
T
0
time
f = 1/T
distance
CALCULATING WAVELENGTH
AND FREQUENCY
= 300/f
f = 300/
= wavelength in meters
f = frequency in MHz
(f = 300/)
Frequency
300 GHz
30 GHz
VHF UHF SHF EHF
Millimeter
waves
10-4 m
10-3 m
10-2 m
10-1 m
1m
10 m
102 m
103 m
104 m
105 m
106 m
107 m
Wavelength
3 GHz
HF
300 MHz
MF
30 MHz
LF
3 MHz
VLF
300 kHz
VF
30 kHz
ELF
3 kHz
300 Hz
30 Hz
THE ELECTROMAGNETIC SPECTRUM
FROM 30 HZ TO 300 GHZ
( = 300/f)
LOW AND MEDIUM
FREQUENCIES
Extremely Low Frequencies - 30 to
300 Hz
Voice Frequencies - 300 to 3000 Hz
Very Low Frequencies - 3 kHz to 30
kHz
Low Frequencies - 30 kHz to 300 kHz
Medium Frequencies - 300 kHz to 3
MHz
HIGH FREQUENCIES
High Frequencies
- 3 MHz to 30 MHz
Very High Frequencies
- 30 MHz to 300 MHz
Ultra High Frequencies
- 300 MHz to 3 GHz
(1 GHz and above = microwaves)
Super High Frequencies
- 3 GHz to 30 GHz
Extremely High Frequencies
- 30 GHz to 300 GHz
300 GHz
Cosmic rays
Gamma rays
X-rays
Ultraviolet
Visible
Infrared
Millimeter
waves
0.4 x 10-6 m
0.8 x 10-6 m
10-5 m
10-4 m
10-3 m
THE ELECTROMAGNETIC
SPECTRUM ABOVE 300 GHZ
Wavelength
OPTICAL FREQUENCIES
Infrared - 0.7 to 10 micron
Visible light - 0.4 to 0.8 micron
Ultraviolet - Shorter than 0.4
micron
Note: A micron is one millionth of a meter.
Light waves are measured and expressed
in wavelength rather than frequency.
Noise, interference and
distortion
Noise:unwanted signals that coincide with the desired
signals. Noise is random, undesirable electric energy.
Two type of noise:internal and external noise.
Internal noise: Caused by internal
devices/components in the circuits.
External noise:noise that is generated outside the
circuit. Eg: atmospheric noise,solar noise, cosmic
noise, man made noise.
Interference-one type of external noise
Distortion: signal being distorted
Limitations in communication
system
Physical constraint
-Delay, attenuation, bandwidth
limitation, etc
Technological constraint
- hardware.
- Expertise
- economy, law
Frequency Spectrum &Bandwidth
The frequency spectrum of a waveform
consists of all frequencies contained in
the waveform and their amplitudes
plotted in the frequency domain.
The bandwidth of a frequency spectrum
is the range of of frequencies contained
in the spectrum.It is calculated by
subtracting the lowest frequency from
the highest.
Frequency Spectrum &Bandwidth
(cont’d)
Bandwidth of the information signal
equals to the difference between the
highest and lowest frequency contained
in the signal.
Similarly, bandwidth of communication
channel is the difference between the
highest and lowest frequency that the
channel allow to pass through it
At this stage you should be able to:
● Explain the functions of the three main parts
of an electronic communication system.
● Describe the system used to classify
different types of electronic communication
and list example of each type.
● Discuss the role of modulation and
multiplexing in facilitating signal transmission.