Transcript Document

Carrier Wave Rabi Flopping
(CWRF)
Presentation by Nathan Hart
Conditions for CWRF:
1. There must exist a one photon resonance with the ground state
2. The Rabi frequency between the ground state and the first excited
state must be on the order of the laser frequency
Result of CWRF:
1. Asymmetric Bloch sphere path for the block vector.
2. Broad frequency generation resulting from beating between
the atomic dipole and the laser frequency.
The two state wave function
ψ = 𝛼|𝑠βŒͺ + 𝛽|𝑝βŒͺ
β€’ 𝒔 π‘Žπ‘‘π‘œπ‘šπ‘–π‘ π‘ π‘‘π‘Žπ‘‘π‘’
β€’ 𝟎 π‘žπ‘’π‘π‘–π‘‘
β€’ ↑ 𝑠𝑝𝑖𝑛
β€’ 𝒑 π‘Žπ‘‘π‘œπ‘šπ‘–π‘ π‘ π‘‘π‘Žπ‘‘π‘’
β€’ 𝟏 π‘žπ‘’π‘π‘–π‘‘
β€’ ↓ 𝑠𝑝𝑖𝑛
𝐻|𝑠βŒͺ = 𝐸𝑠 |𝑠βŒͺ
𝐻|𝑠βŒͺ = 𝐸𝑠 |𝑠βŒͺ
i or 𝑦𝑠
i
𝛼
𝛽
1 or π‘₯𝑠
𝛼 = π‘₯𝑠 + 𝑖𝑦𝑠
1
Ξ² = π‘₯𝑝 + 𝑖𝑦𝑝
The two state wave function (continued)
πœ“β€² = 𝛼|𝑠βŒͺ + 𝛽|𝑝βŒͺ
Identity
βŒ©πœ“β€² πœ“β€² = 𝛼
2
+ 𝛽
2
=1
𝛼 = π‘₯𝑠 + 𝑖𝑦𝑠 = π‘Ÿπ‘  𝑒 π‘–πœ™π‘ 
𝛽 = π‘₯𝑝 + 𝑖𝑦𝑝 = π‘Ÿπ‘ 𝑒
In general (just math):
π‘–πœ™π‘
𝑦
π‘‡π‘Žπ‘› πœ‘π‘Ž = π‘₯π‘Ž ⟹ πœ‘π‘Ž = π΄π‘Ÿπ‘π‘‡π‘Žπ‘›
π‘Ž
π‘¦π‘Ž
π‘₯π‘Ž
= |𝑠βŒͺ
The Bloch Vector 𝝍
Get Ο†: Multiply times 𝑒 βˆ’π‘–πœ™π‘ 
𝑒 βˆ’π‘–πœ‘π‘  πœ“β€² = πœ“ = π‘Ÿπ‘  |𝑠βŒͺ + π‘Ÿπ‘ 𝑒 π‘–πœ™ |𝑝βŒͺ
Identity
βŒ©πœ“|πœ“βŒͺ = π‘Ÿπ‘ 
2
+ π‘Ÿπ‘
2
=1
= |𝑝βŒͺ
Wikipedia: Bloch Vector
The Bloch Vector
πœ“ = π‘Ÿπ‘  |𝑠βŒͺ + π‘Ÿπ‘ 𝑒 π‘–πœ™ |𝑝βŒͺ
Get r: Identity on the surface
πœ“πœ“ = π‘Ÿ
Two unknowns
π‘Ÿπ‘  =?
π‘Ÿπ‘ =?
2
= π‘Ÿπ‘ 
Get πœƒ
2
+ π‘Ÿπ‘
2
=1
Try
π‘Ÿπ‘  = π‘Ÿ πΆπ‘œπ‘  πœƒ/2
π‘Ÿπ‘ = π‘Ÿ 𝑆𝑖𝑛(πœƒ/2)
= |𝑠βŒͺ
ψ = π‘ŸπΆπ‘œπ‘ (πœƒ/2)|𝑠βŒͺ + π‘Ÿπ‘†π‘–π‘›(πœƒ/2)𝑒 π‘–πœ™ |𝑝βŒͺ
π‘Ÿ is a measure of the coherence of the two
states |𝑠βŒͺ and |𝑝βŒͺ.
r = 1 ⟹ completely coherent
r = 0 ⟹ completely incoherent
= |𝑝βŒͺ
Wikipedia: Bloch Vector
Optical Interpretation of Bloch Sphere
Electric Dipole
𝑒 πœ“|π‘₯ πœ“ = π‘’π‘Ÿπ‘  π‘Ÿπ‘ 𝑠 π‘₯ 𝑝 𝑒 π‘–πœ™ + 𝑝 π‘₯ 𝑠 𝑒 βˆ’π‘–πœ™
= 2πœ‡π‘ π‘ π‘Ÿ 2 𝑆𝑖𝑛(πœƒ)πΆπ‘œπ‘ (πœ™)
πœ‡π‘ π‘ = 𝑝 π‘₯ 𝑠
𝑆𝑖𝑛 πœƒ = 𝑆𝑖𝑛 πœƒ/2 πΆπ‘œπ‘ (πœƒ/2)
β€’ The atomic dipole is in the x-y plane.
β€’ The electric field of the laser may also
be in the x-y plane.
3D Spatial Interpretation
NMR: In a semiclassical description |ψ(π‘Ÿ, πœƒβ€², πœ‘β€²)βŒͺ = 𝑒 βˆ’π‘–π»π‘‘ β€² ψ(π‘Ÿ, πœƒ, πœ‘)
of spin, the magnetic dipole points
in the direction of the Bloch vector
Rotation operator
and precesses with it.
= |𝑠βŒͺ
ψ
= |𝑝βŒͺ
Wikipedia: Bloch Vector
Carrier Wave Rabi Flopping (CWRF)
β€œThe source for the CWRF is due to fast oscillations in the polarization equations outside
the RWA.”
Hughes, S. "Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses." Physical
review letters 81, no. 16 (1998): 3363.
𝑑
𝑠 𝒙 𝑝 + 𝑐𝑐
𝑑𝑑
∞
1
π‘Ž πœ” =
π‘Ž 𝑑 eβˆ’π‘–πœ”π‘‘ 𝑑𝑑
2πœ‹ βˆ’βˆž
𝑒2
π‘Š πœ” = 2 2 2 π‘Ž πœ” 2
4πœ–0 𝑐 πœ”
π‘Ž 𝑑 =
Dipole acceleration
Frequency spectrum
Slow oscillation
Low frequency
𝑠=
(𝑒 βˆ’π‘– πœ”βˆ’πœˆ 𝑑/2
𝑝 = (𝑒 βˆ’π‘–
πœ”+𝜈 𝑑/2
|p⟩
Fast oscillation
High frequency
+ 𝑒 𝑖 πœ”+𝜈 𝑑/2 )(𝐴𝑒 βˆ’π‘–Ξ©t 𝑑
+
+ 𝑒𝑖
+ 𝐷𝑒 𝑖Ωt 𝑑 )
πœ”βˆ’πœˆ 𝑑/2 )(𝐢𝑒 βˆ’π‘–Ξ©t 𝑑
𝐡𝑒 𝑖Ωt 𝑑
)
πœ”
𝜈
|s⟩
Beating the Frequencies
Approximations:
πœ”+𝜈 𝑑
=𝜈
2
πœ”βˆ’πœˆ β‰ˆ0 →𝐴 =𝐡 =𝐢 =𝐷
Probability amplitudes:
𝑠 ∝ (1 + 𝑒 π‘–πœˆπ‘‘ )(𝑒 βˆ’π‘–Ξ©t 𝑑 + 𝑒 𝑖Ωt 𝑑 )
𝑝 ∝ (𝑒 βˆ’π‘–πœˆπ‘‘ + 1)(𝑒 βˆ’π‘–Ξ©π‘‘π‘‘+Ο† + 𝑒 𝑖Ω𝑑 𝑑+Ο† )
Electric Dipole
𝑒 πœ“|π‘₯ πœ“ = πœ‡π‘ π‘ π‘βˆ— 𝑠 + 𝑠 βˆ— 𝑝
= πœ‡π‘ π‘ (𝐸π‘₯𝑝 𝑖 𝜈 βˆ’ Ξ©t 𝑑 + Ο† + 𝐸π‘₯𝑝 𝑖 𝜈 + Ξ©t 𝑑 + Ο† + β‹―
List of frequencies:
β€’ 𝜈 + Ξ©t
β€’ 𝜈
β€’ 𝜈 βˆ’ Ξ©t
β€’ Ξ©t
β€’
β€’
β€’
β€’
𝜈 + 2Ωt
0
𝜈 βˆ’ 2Ξ©t
2Ξ©t
β€’
β€’
β€’
β€’
2𝜈 + Ωt
2𝜈
2𝜈 βˆ’ Ξ©t
2Ξ©t
β€’ 2𝜈 + 2Ξ©t
β€’ 2𝜈 βˆ’ 2Ξ©t
Pulse Area Theorem:
The laser’s electric field β„° π‘₯, 𝑑 :
β„° π‘₯, 𝑑 = 𝐴 π‘₯, 𝑑 𝑒 π‘–πœˆπ‘‘
πœ‡ = π‘‘π‘–π‘π‘œπ‘™π‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘
The Rabi frequency Ω(π‘₯, 𝑑):
πœ‡π΄ π‘₯, 𝑑
Ω π‘₯, 𝑑 =
ℏ
The pulse area ΞΈ:
∞
πœƒ(π‘₯) =
Ω π‘₯, 𝑑 𝑑𝑑
βˆ’βˆž
Pulse Area Theorem: The laser pulse phase is not changed (only
delayed in time) if the pulse area πœƒ(π‘₯) = 2π‘›πœ‹, where 𝑛 is an
integer. Self-Induced Transparency
Fourier Series Waveform Reconstruction
∞
𝑠 𝑑
2
=
∞
𝐴𝑛 πΆπ‘œπ‘ (πœ”π‘› 𝑑) +
𝑛=0
𝐡𝑛 𝑆𝑖𝑛(πœ”π‘› 𝑑)
𝑛=0
Wikipedia: Fourier Series, 2015
M. F. Ciappina, J. A. Pérez-Hernández, A. S.
Landsman, T. Zimmermann, M. Lewenstein, L.
Roso, and F. Krausz, Phys. Rev. Lett. 114,
143902
Pulse is delayed and distorted by Rabi Flopping
Pulse is slightly delayed in medium
Hughes, S. "Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical
pulses." Physical review letters 81, no. 16 (1998): 3363.
Absorption
Absorption & Frequency generation
Hughes, S. "Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical
pulses." Physical review letters 81, no. 16 (1998): 3363.
Ω𝑅 ~ 𝜈
β€œFor these pulses, peculiar behavior emerges when the driven light
intensity is so high that the period of one Rabi oscillation is
comparable with that of one cycle of light.”
M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, T. Zimmermann, M. Lewenstein,
L. Roso, and F. Krausz, Phys. Rev. Lett. 114, 143902
Density Matrix Simulation of
Sodium Atom Level Population
3s
continuum
Probability
5p
𝜏 = 56 𝑓𝑠
𝐼0 = 6 × 1012 π‘Š/π‘π‘š2
Ξ» = 800 π‘›π‘š
Linear polarization
4s
Time [fs]
β€’ Transient population inversion of ground state 3s and the excited
state 5p at sufficiently high intensities.
β€’ Possible applications for new laser mediums
Nathan
NathanHart
Hart
Density Matrix Simulation of
Sodium Atom Dipole Spectrum
photon yield [au]
5p
1st
3rd
energy [eV]
𝜏 = 56 𝑓𝑠
𝐼0 = 6 × 1012 π‘Š/π‘π‘š2
Ξ» = 800 π‘›π‘š
Linear polarization
Broadened odd harmonic orders
Final Notes
β€’ M. F. Ciappina et. al. showed that sodium does not
satisfy the condition #1 (slide 1) for CWRF.
β€’ However, sodium may have a CWRF-like 3-photon
resonance with the 5p energy level, allowing for
broad frequency generation at each odd harmonic.
M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman,
T. Zimmermann, M. Lewenstein, L. Roso, and F. Krausz,
Phys. Rev. Lett. 114, 143902