Polarization of Light - University of Hawaii

download report

Transcript Polarization of Light - University of Hawaii

Polarization of Light:
from Basics to Instruments
(in less than 100 slides)
N. Manset
CFHT
Introduction
•
•
•
•
•
Part I: Different polarization states of light
Part II: Stokes parameters, Mueller matrices
Part III: Optical components for polarimetry
Part IV: Polarimeters
Part V: ESPaDOnS
N. Manset / CFHT
Polarization of Light: Basics to Instruments
2
Part I: Different polarization
states of light
• Light as an electromagnetic wave
• Mathematical and graphical descriptions of
polarization
• Linear, circular, elliptical light
• Polarized, unpolarized light
N. Manset / CFHT
Polarization of Light: Basics to Instruments
3
Part I: Polarization states
Light as an electromagnetic
wave
Light is a transverse wave,
an electromagnetic wave
N. Manset / CFHT
Polarization of Light: Basics to Instruments
4
Part I: Polarization states
Mathematical description of
the EM wave
Light wave that propagates in the z direction:


E x ( z, t )  E 0x cos(kz -  t) x


E y ( z, t )  E 0y cos(kz -  t   ) y
N. Manset / CFHT
Polarization of Light: Basics to Instruments
5
Part I: Polarization states
Graphical representation of the
EM wave (I)
One can go from:


E x ( z, t )  E 0x cos(kz -  t) x


E y ( z, t )  E 0y cos(kz -  t   ) y
to the equation of an ellipse (using trigonometric
identities, squaring, adding):
2
Ey
 Ex   Ey 
E
x
 2

  
cos  sin 2 


E0x E0y
 E0x   E0y 
2
N. Manset / CFHT
Polarization of Light: Basics to Instruments
6
Part I: Polarization states
Graphical representation of the
EM wave (II)
An ellipse can be represented
by 4 quantities:
1. size of minor axis
2. size of major axis
3. orientation (angle)
4. sense (CW, CCW)
Light can be represented by 4 quantities...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
7
Part I: Polarization states, linear polarization
Vertically polarized light


E x ( z, t )  E 0x cos(kz -  t) x


E y ( z, t )  E 0y cos(kz -  t   ) y
If there is no amplitude in x (E0x = 0), there is
only one component, in y (vertical).
N. Manset / CFHT
Polarization of Light: Basics to Instruments
8
Part I: Polarization states, linear polarization
Polarization at 45º (I)


E x ( z, t )  E 0x cos(kz -  t) x


E y ( z, t )  E 0y cos(kz -  t   ) y
If there is no phase difference (=0) and
E0x = E0y, then Ex = Ey
N. Manset / CFHT
Polarization of Light: Basics to Instruments
9
Part I: Polarization states, linear polarization
Polarization at 45º (II)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
10
Part I: Polarization states, circular polarization
Circular polarization (I)


E x ( z, t )  E 0x cos(kz -  t) x


E y ( z, t )  E 0y cos(kz -  t   ) y
If the phase difference is = 90º and E0x = E0y
then: Ex / E0x = cos  , Ey / E0y = sin 
and we get the equation of a circle:
2
 Ex   Ey 
  cos2  sin 2  1

  
E 
E
 0x   0y 
2
N. Manset / CFHT
Polarization of Light: Basics to Instruments
11
Part I: Polarization states, circular polarization
Circular polarization (II)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
12
Part I: Polarization states, circular polarization
Circular polarization (III)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
13
Part I: Polarization states, circular polarization... see it now?
Circular polarization (IV)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
14
Part I: Polarization states, elliptical polarization
Elliptical polarization
• Linear + circular polarization = elliptical polarization
N. Manset / CFHT
Polarization of Light: Basics to Instruments
15
Part I: Polarization states, unpolarized light
Unpolarized light
(natural light)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
16
Part I: Polarization states
A cool Applet
Electromagnetic Wave
Location: http://www.uno.edu/~jsulliva/java/EMWave.html
N. Manset / CFHT
Polarization of Light: Basics to Instruments
17
Part II: Stokes parameters and
Mueller matrices
• Stokes parameters, Stokes vector
• Stokes parameters for linear and circular
polarization
• Stokes parameters and polarization P
• Mueller matrices, Mueller calculus
• Jones formalism
N. Manset / CFHT
Polarization of Light: Basics to Instruments
18
Part II: Stokes parameters
Stokes parameters
A tiny itsy-bitsy little bit of history...
• 1669: Bartholinus discovers double refraction in calcite
• 17th – 19th centuries: Huygens, Malus, Brewster, Biot,
Fresnel and Arago, Nicol...
• 19th century: unsuccessful attempts to describe unpolarized
light in terms of amplitudes
• 1852: Sir George Gabriel Stokes took a very different
approach and discovered that polarization can be described in
terms of observables using an experimental definition
N. Manset / CFHT
Polarization of Light: Basics to Instruments
19
Part II: Stokes parameters
Stokes parameters (I)
The polarization ellipse is only valid at a given instant of time
(function of time):
2
E y (t)
 E x (t)   E y (t) 
E
(t)
x
 2

  
cos εsin 2 ε


E0x (t) E0y (t)
 E0x (t)  E0y (t)
2
To get the Stokes parameters, do a time average (integral over
time) and a little bit of algebra...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
20
Part II: Stokes parameters
Stokes parameters (II)
described in terms of the electric field
E
2
0x
E
  E
2 2
0y
2
0x
E
  2E
2 2
0y
The 4 Stokes parameters
are:
E0ycos ε   2 E0x E0ysin ε 
2
0x
2
2
S0  I  E0x
 E0y
2
2
S1  Q  E0x
 E0y
S2  U  2 E0x E0ycos ε
S3  V  2 E0x E0ysin ε
N. Manset / CFHT
Polarization of Light: Basics to Instruments
21
2
Part II: Stokes parameters
Stokes parameters (III)
described in geometrical terms

a2
I 

   2
 Q   a cos2  cos2 

 U   a 2 cos2  sin 2 

  
 a 2 sin 2 

V
  

N. Manset / CFHT
Polarization of Light: Basics to Instruments
22
Part II: Stokes parameters, Stokes vectors
Stokes vector
The Stokes parameters can be arranged in a Stokes vector:
2
2

 
E

E
I
intensity 
 
0x
0y
 
  

2
2
 Q   E0x  E0y   I0  I90 
 U    2 E E cos ε    I45  I135 
 
   0x 0y


 2 E E sin ε 
V
   0x 0y
  IRCP   ILCP
• Linear polarization
• Circular polarization
• Fully polarized light
• Partially polarized light
• Unpolarized light
N. Manset / CFHT
Q  0, U  0, V  0
Q  0, U  0, V  0
I2  Q2  U 2  V2
I2  Q2  U 2  V 2
QUV0
Polarization of Light: Basics to Instruments
23
Part II: Stokes parameters
Pictorial representation of the
Stokes parameters


N. Manset / CFHT
Polarization of Light: Basics to Instruments
24
Part II: Stokes parameters, examples
Stokes vectors for linearly
polarized light
LHP light
LVP light
+45º light
-45º light
1
 
1
I0  
0
 
 0
1
 
  1
I0  
0
 
0
1
 
 0
I0  
1
 
 0
1
 
0
I0  
1
 
0
N. Manset / CFHT
Polarization of Light: Basics to Instruments
25
Part II: Stokes parameters, examples
Stokes vectors for circularly
polarized light
N. Manset / CFHT
RCP light
LCP light
1
 
 0
I0  
0
 
1
1
 
0
I0  
0
 
 1
Polarization of Light: Basics to Instruments
26
Part II: Stokes parameters
(Q,U) to (P,)
In the case of linear polarization (V=0):
Q2  U 2
P
I
Q  P cos 2
N. Manset / CFHT
1
U
  arctan 
2
Q
U  P sin 2
Polarization of Light: Basics to Instruments
27
Part II: Stokes parameters, Mueller matrices
Mueller matrices
If light is represented by Stokes vectors, optical components are
then described with Mueller matrices:
[output light] = [Muller matrix] [input light]
 I'   m11 m12
  
 Q'   m21 m22
 U'    m
m32
31
  
 V'   m41 m42
N. Manset / CFHT
m13
m23
m33
m43
m14  I 
 
m24  Q 
m34  U 
 
m44  V 
Polarization of Light: Basics to Instruments
28
Part II: Stokes parameters, Mueller matrices
Mueller calculus (I)
Element 1
Element 2
Element 3
M1
M2
M3
I’ = M3 M2 M1 I
N. Manset / CFHT
Polarization of Light: Basics to Instruments
29
Part II: Stokes parameters, Mueller matrices
Mueller calculus (II)
Mueller matrix M’ of an optical component with
Mueller matrix M rotated by an angle :
M’ = R(- ) M R()
with:
0
0
1

 0 cos2 sin 2
R( )  
0  sin 2 cos2

0
0
0
N. Manset / CFHT
0

0
0

1
Polarization of Light: Basics to Instruments
30
Part II: Stokes parameters, Jones formalism, not that important here...
Jones formalism
Stokes vectors and Mueller matrices cannot describe
interference effects. If the phase information is important (radioastronomy, masers...), one has to use the Jones formalism, with
complex vectors and Jones matrices:
• Jones vectors to describe the • Jones matrices to represent
polarization of light:
optical components:

 j11 j12 

 E x (t )


J  
J (t )   
 E (t )
 j21 j22 
 y 
BUT: Jones formalism can only deal with 100% polarization...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
31
Part III: Optical components
for polarimetry
• Complex index of refraction
• Polarizers
• Retarders
N. Manset / CFHT
Polarization of Light: Basics to Instruments
32
Part III: Optical components
Complex index of refraction
The index of refraction is actually a complex quantity:
m  n  ik
• real part
• imaginary part
• optical path length,
refraction: speed of light
depends on media
• absorption, attenuation,
extinction: depends on
media
• birefringence: speed of
light also depends on P
• dichroism/diattenuation:
also depends on P
N. Manset / CFHT
Polarization of Light: Basics to Instruments
33
Part III: Optical components, polarizers
Polarizers
Polarizers absorb one component of the
polarization but not the other.
The input is natural light, the output is polarized light (linear,
circular, elliptical). They work by dichroism, birefringence,
reflection, or scattering.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
34
Part III: Optical components, polarizers
Wire-grid polarizers (I)
[dichroism]
• Mainly used in the IR and longer
wavelengths
• Grid of parallel conducting wires with a
spacing comparable to the wavelength of
observation
• Electric field vector parallel to the wires is
attenuated because of currents induced in
the wires
N. Manset / CFHT
Polarization of Light: Basics to Instruments
35
Part III: Optical components, polarizers
Wide-grid polarizers (II)
[dichroism]
N. Manset / CFHT
Polarization of Light: Basics to Instruments
36
Part III: Optical components, polarizers
Dichroic crystals
[dichroism]
Dichroic crystals absorb one
polarization state over the other
one.
Example: tourmaline.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
37
Part III: Optical components, polarizers – Polaroids, like in sunglasses!
Polaroids
[dichroism]
Made by heating and stretching a sheet of PVA laminated to
a supporting sheet of cellulose acetate treated with iodine
solution (H-type polaroid). Invented in 1928.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
38
Part III: Optical components, polarizers
Crystal polarizers (I)
[birefringence]
• Optically
anisotropic crystals
• Mechanical
model:
• the crystal is anisotropic, which means that
the electrons are bound with different
‘springs’ depending on the orientation
• different ‘spring constants’ gives different
propagation speeds, therefore different indices
of refraction, therefore 2 output beams
N. Manset / CFHT
Polarization of Light: Basics to Instruments
39
Part III: Optical components, polarizers
Crystal polarizers (II)
[birefringence]
isotropic
crystal
(sodium
chloride)
anisotropic
crystal
(calcite)
The 2 output beams are polarized (orthogonally).
N. Manset / CFHT
Polarization of Light: Basics to Instruments
40
Part III: Optical components, polarizers
Crystal polarizers (IV)
[birefringence]
• Crystal polarizers used as:
• Beam displacers,
• Beam splitters,
• Polarizers,
• Analyzers, ...
• Examples: Nicol prism, GlanThomson polarizer, Glan or GlanFoucault prism, Wollaston prism,
Thin-film polarizer, ...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
41
Part III: Optical components, polarizers
Mueller matrices of polarizers
(I)
• (Ideal) linear polarizer at angle :
cos2χ
sin 2χ
 1

cos2 2χ
sin 2χ cos2χ
1  cos2χ
sin 2 2χ
2  sin 2χ sin 2χ cos2χ

0
0
 0
N. Manset / CFHT
Polarization of Light: Basics to Instruments
0

0
0

0
42
Part III: Optical components, polarizers
Mueller matrices of polarizers
(II)
Linear (±Q)
polarizer at 0º:
 1 1

1 1
0 .5 
0
0

0
 0
N. Manset / CFHT
0
0
0
0
0

0
0

0
Linear (±U)
polarizer at 0º :
1

 0
0 .5 
1

 0
0 1
0 0
0 1
0 0
0

0
0

0
Circular (±V)
polarizer at 0º :
1

 0
0 .5 
0

1
Polarization of Light: Basics to Instruments
0
0
0
0
0  1

0 0
0 0

0 1
43
Part III: Optical components, polarizers
Mueller calculus with a
polarizer
Input light: unpolarized --- output light: polarized
 I' 
1
 

 Q' 
0
 U'   0.5   1
 

 V' 
0
0 1
0 0
0 1
0 0
0  I 
I
 
 
0  0 
0
 0.5  



0 0
-I
 
 
0  0 
0
Total output intensity: 0.5 I
N. Manset / CFHT
Polarization of Light: Basics to Instruments
44
Part III: Optical components, retarders
Retarders
• In retarders, one polarization gets ‘retarded’, or delayed,
with respect to the other one. There is a final phase
difference between the 2 components of the polarization.
Therefore, the polarization is changed.
• Most retarders are based on birefringent materials (quartz,
mica, polymers) that have different indices of refraction
depending on the polarization of the incoming light.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
45
Part III: Optical components, retarders
Half-Wave plate (I)
• Retardation of ½ wave
or 180º for one of the
polarizations.
• Used to flip the linear
polarization or change
the handedness of
circular polarization.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
46
Part III: Optical components, retarders
Half-Wave plate (II)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
47
Part III: Optical components, retarders
Quarter-Wave plate (I)
• Retardation of ¼ wave or 90º for one of the
polarizations
• Used to convert linear polarization to elliptical.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
48
Part III: Optical components, retarders
Quarter-Wave plate (II)
• Special case: incoming light polarized at 45º with respect to
the retarder’s axis
• Conversion from linear to circular polarization (vice versa)
N. Manset / CFHT
Polarization of Light: Basics to Instruments
49
Part III: Optical components, retarders
Mueller matrix of retarders (I)
• Retarder of retardance  and position angle :
0
0
1

H sin4ψ
 0 G  H cos4ψ
0
H sin4ψ
G  H cos4ψ

 sinτ cos2ψ
 0 sinτ sin2ψ
1
with : G  1  cosτ  and H 
2
N. Manset / CFHT


 sinτ sin2ψ 
sinτ cos2ψ 

cosτ

1
1  cosτ 
2
Polarization of Light: Basics to Instruments
0
50
Part III: Optical components, retarders
Mueller matrix of retarders (II)
• Half-wave oriented at 0º
or 90º
1

0
k
0

0
0 0
0

1 0
0
0 1 0 

0 0  1
N. Manset / CFHT
• Half-wave oriented at
±45º
1 0

0 1
k
0 0

0 0
0 0

0 0
1 0

0  1
Polarization of Light: Basics to Instruments
51
Part III: Optical components, retarders
Mueller matrix of retarders
(III)
• Quarter-wave oriented at
0º
1

0
k
0

0
0 0
1 0
0 0
0 1
N. Manset / CFHT
0

0
1

0
• Quarter-wave oriented at
±45º
1 0

0 0
k
0 0

0 1
0 0

0  1
1 0

0 0
Polarization of Light: Basics to Instruments
52
Part III: Optical components, retarders
Mueller calculus with a
retarder
• Input light linear polarized (Q=1)
• Quarter-wave at +45º
• Output light circularly polarized (V=1)
 I' 
1 0
 

 Q' 
0 0

k
 U' 
0 0
 

 V' 
0 1
N. Manset / CFHT
0 0  1 
1
 
 
0  1  1 
 0

k
 0
1 0  0 
 
 
0 0  0 
1
Polarization of Light: Basics to Instruments
53
Part III: Optical components, polarizers
(Back to polarizers, briefly)
Circular polarizers
• Input light: unpolarized --Output light: circularly polarized
• Made of a linear polarizer
glued to a quarter-wave plate
oriented at 45º with respect to
one another.
N. Manset / CFHT
Polarization of Light: Basics to Instruments
54
Part III: Optical components, retarders
Achromatic retarders (I)
• Retardation depends on wavelength
• Achromatic retarders: made of 2 different materials with
opposite variations of index of refraction as a function of wavelength
• Pancharatnam achromatic retarders: made of 3
identical plates rotated w/r one another
• Superachromatic retarders: 3 pairs of quartz and MgF2
plates
N. Manset / CFHT
Polarization of Light: Basics to Instruments
55
Part III: Optical components, retarders
Achromatic retarders (II)
=140-220º
not very
achromatic!
= 177-183º
much better!
N. Manset / CFHT
Polarization of Light: Basics to Instruments
56
Part III: Optical components, retarders
Retardation on total internal
reflection
• Total internal
reflection
produces
retardation (phase
shift)
• In this case, retardation is very achromatic
since it only depends on the refractive index
• Application: Fresnel rhombs
N. Manset / CFHT
Polarization of Light: Basics to Instruments
57
Part III: Optical components, retarders
Fresnel rhombs
• Quarter-wave and half-wave rhombs are
achieved with 2 or 4 reflections
N. Manset / CFHT
Polarization of Light: Basics to Instruments
58
Part III: Optical components, retarders
Other retarders
• Soleil-Babinet: variable retardation to better than 0.01 waves
• Nematic liquid crystals... Liquid crystal
variable retarders... Ferroelectric liquid
crystals... Piezo-elastic modulators...
Pockels and Kerr cells...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
59
Part IV: Polarimeters
• Polaroid-type polarimeters
• Dual-beam polarimeters
N. Manset / CFHT
Polarization of Light: Basics to Instruments
60
Part IV: Polarimeters, polaroid-type
Polaroid-type polarimeter
for linear polarimetry (I)
• Use a linear polarizer (polaroid) to measure
linear polarization ... [another cool applet]
Location: http://www.colorado.edu/physics/2000/applets/lens.html
• Polarization percentage and position angle:
I max  I min
P
I max  I min
  ( I  I max )
N. Manset / CFHT
Polarization of Light: Basics to Instruments


61
Part IV: Polarimeters, polaroid-type
Polaroid-type polarimeter
for linear polarimetry (II)
• Move the polaroid to 2 positions, 0º and 45º
(to measure Q, then U)
• Advantage: very simple to make
• Disadvantage: half of the light is cut out
• Other disadvantages: non-simultaneous
measurements, cross-talk...
N. Manset / CFHT
Polarization of Light: Basics to Instruments
62
Part IV: Polarimeters, polaroid-type
Polaroid-type polarimeter
for circular polarimetry
• Polaroids are not sensitive to circular
polarization, so convert circular polarization
to linear first, by using a quarter-wave plate
• Polarimeter now uses a quarter-wave plate
and a polaroid
• Same disadvantages as before
N. Manset / CFHT
Polarization of Light: Basics to Instruments
63
Part IV: Polarimeters, dual-beam type
Dual-beam polarimeters
Principle
• Instead of cutting out one polarization and keeping
the other one (polaroid), split the 2 polarization
states and keep them both
• Use a Wollaston prism as an analyzer
• Disadvantages: need 2 detectors (PMTs, APDs) or
an array; end up with 2 ‘pixels’ with different gain
• Solution: rotate the Wollaston or keep it fixed and
use a half-wave plate to switch the 2 beams
N. Manset / CFHT
Polarization of Light: Basics to Instruments
64
Part IV: Polarimeters, dual-beam type
Dual-beam polarimeters
Switching beams
• Unpolarized light: two beams have
identical intensities whatever the prism’s
position if the 2 pixels have the same gain


• To compensate different gains, switch the
2 beams and average the 2 measurements
N. Manset / CFHT
Polarization of Light: Basics to Instruments
65
Part IV: Polarimeters, dual-beam type
Dual-beam polarimeters
Switching beams by rotating the prism
rotate by
180º
N. Manset / CFHT
Polarization of Light: Basics to Instruments
66
Part IV: Polarimeters, dual-beam type
Dual-beam polarimeters
Switching beams using a ½ wave plate
Rotated
by 45º
N. Manset / CFHT
Polarization of Light: Basics to Instruments
67
Part IV: Polarimeters, example of circular polarimeter
A real circular polarimeter
Semel, Donati, Rees (1993)
Quarter-wave plate, rotated at -45º and +45º
Analyser: double calcite crystal
N. Manset / CFHT
Polarization of Light: Basics to Instruments
69
Part IV: Polarimeters, example of circular polarimeter
A real circular polarimeter
free from gain (g) and atmospheric
transmission () variation effects
• First measurement with quarter-wave plate at -45º, signal
l
r
S
,
S
in the (r)ight and (l)eft beams: 1
1
• Second measurement with quarter-wave plate at +45º,
l
r
S
,
S
signal in the (r)ight and (l)eft beams: 2
2
• Measurements of the signals:
S1l  g l1 ( I1  V1 ) S1r  g r1 ( I1  V1 )
S  g 2 ( I 2  V2 ) S  g  2 ( I 2  V2 )
l
2
N. Manset / CFHT
l
r
2
r
Polarization of Light: Basics to Instruments
70
Part IV: Polarimeters, example of circular polarimeter
A real circular polarimeter
free from gain and atmospheric
transmission variation effects
• Build a ratio of measured signals which is free of gain and
variable atmospheric transmission effects:
 1
1  S1l S2r
I 2V1  I1V2
F   l r  1 
4  S2 S1
 2 I1 I 2  I 2V1  I1V2  V1V2
1  V1 V2 
F     forV  1
2  I1 I 2 
average of the 2 measurements
N. Manset / CFHT
Polarization of Light: Basics to Instruments
71
Part IV: Polarimeters, summary
Polarimeters - Summary
• 2 types:
– polaroid-type: easy to make but ½ light is lost, and affected
by variable atmospheric transmission
– dual-beam type: no light lost but affected by gain
differences and variable transmission problems
• Linear polarimetry:
– analyzer, rotatable
 2 positions minimum
– analyzer + half-wave plate
• Circular polarimetry:
– analyzer + quarter-wave plate
N. Manset / CFHT
 1 position minimum
Polarization of Light: Basics to Instruments
72
Part V: ESPaDOnS
Optical components of the
polarimeter part :
• Wollaston prism: analyses the
polarization and separates the 2
(linear!) orthogonal polarization
states
• Retarders, 3 Fresnel rhombs:
– Two half-wave plates to switch the
beams around
– Quarter-wave plate to do circular
polarimetry
N. Manset / CFHT
Polarization of Light: Basics to Instruments
73
Part V: ESPaDOnS, circular polarimetry mode
ESPaDOnS: circular
polarimetry
• Fixed quarter-wave rhomb
• Rotating bottom half-wave, at 22.5º
increments
• Top half-wave rotates continuously at about
1Hz to average out linear polarization when
measuring circular polarization
N. Manset / CFHT
Polarization of Light: Basics to Instruments
74
Part V: ESPaDOnS, circular polarimetry mode
ESPaDOnS: circular
polarimetry of circular polarization


• analyzer
N. Manset / CFHT
• half-wave
• 22.5º positions
• flips
polarization
• gain,
transmission
• quarterwave
• fixed
• circular
to linear
Polarization of Light: Basics to Instruments
75
Part V: ESPaDOnS, circular polarimetry mode
ESPaDOnS: circular polarimetry of
(unwanted) linear polarization
• analyzer
• circular part
• half-wave
goes through
not analyzed
and adds same
intensities to
both beams
• 22.5º
positions
• linear part is
analyzed!
N. Manset / CFHT
• gain,
transmission
• quarterwave
• fixed
• linear to
elliptical
Polarization of Light: Basics to Instruments
• Add a
rotating
half-wave
to “spread
out” the
unwanted
signal
76
Part V: ESPaDOnS, linear polarimetry
ESPaDOnS: linear polarimetry
• Half-Wave rhombs positioned at 22.5º
increments
• Quarter-Wave fixed
N. Manset / CFHT
Polarization of Light: Basics to Instruments
77
Part V: ESPaDOnS, linear polarimetry
ESPaDOnS: linear polarimetry
• Half-Wave rhombs positioned as 22.5º
increments


– First position gives Q
– Second position gives U
– Switch beams for gain and atmosphere effects
• Quarter-Wave fixed
N. Manset / CFHT
Polarization of Light: Basics to Instruments
78
Part V: ESPaDOnS, summary
ESPaDOnS - Summary
• ESPaDOnS can do linear and circular
polarimetry (quarter-wave plate)
• Beams are switched around to do the
measurements, compensate for gain and
atmospheric effects
• Fesnel rhombs are very achromatic
N. Manset / CFHT
Polarization of Light: Basics to Instruments
79
N. Manset / CFHT
Polarization of Light: Basics to Instruments
80
Credits for pictures and movies
• Christoph Keller’s home page – his 5 lectures
http://www.noao.edu/noao/staff/keller/
• “Basic Polarisation techniques and devices”, Meadowlark Optics Inc.
http://www.meadowlark.com/
• Optics, E. Hecht and Astronomical Polarimetry, J. Tinbergen
• Planets, Stars and Nebulae Studied With Photopolarimetry, T.
Gehrels
• Circular polarization movie
http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm
• Unpolarized light movie
http://www.colorado.edu/physics/2000/polarization/polarizationII.html
• Reflection of wave http://www.physicsclassroom.com/mmedia/waves/fix.html
• ESPaDOnS web page and documents
N. Manset / CFHT
Polarization of Light: Basics to Instruments
81
References/Further reading
On the Web
• Very short and quick introduction, no equation
http://www.cfht.hawaii.edu/~manset/PolarIntro_eng.html
• Easy fun page with Applets, on polarizing filters
http://www.colorado.edu/physics/2000/polarization/polarizationI.html
• Polarization short course
http://www.glenbrook.k12.il.us/gbssci/phys/Class/light/u12l1e.html
• “Instrumentation for Astrophysical
Spectropolarimetry”, a series of 5 lectures given at the
IAC Winter School on Astrophysical Spectropolarimetry,
November 2000 –
http://www.noao.edu/noao/staff/keller/lectures/index.html
N. Manset / CFHT
Polarization of Light: Basics to Instruments
82
References/Further reading
Polarization basics
• Polarized Light, D. Goldstein – excellent book,
easy read, gives a lot of insight, highly
recommended
• Undergraduate textbooks, either will do:
– Optics, E. Hecht
– Waves, F. S. Crawford, Berkeley Physics Course vol. 3
N. Manset / CFHT
Polarization of Light: Basics to Instruments
83
References/Further reading
Astronomy, easy/intermediate
• Astronomical Polarimetry, J. Tinbergen –
instrumentation-oriented
• La polarisation de la lumière et l'observation
astronomique, J.-L. Leroy – astronomy-oriented
• Planets, Stars and Nebulae Studied With
Photopolarimetry, T. Gehrels – old but classic
• 3 papers by K. Serkowski – instrumentation-oriented
N. Manset / CFHT
Polarization of Light: Basics to Instruments
84
References/Further reading
Astronomy, advanced
• Introduction to Spectropolarimetry, J.C.
del Toro Iniesta – radiative transfer – ouch!
• Astrophysical Spectropolarimetry,
Trujillo-Bueno et al. (eds) – applications to
astronomy
N. Manset / CFHT
Polarization of Light: Basics to Instruments
85