Folie 1 - UB Electrical Engineering

Download Report

Transcript Folie 1 - UB Electrical Engineering

Quantum Lasers
EE 566 Optical Communications
Massoud MOMENI
Grad Microelectronics
[email protected]
Quantum Lasers,
M. Momeni
1
Overview
1.
Quantum Lasers
a)
b)
c)
d)
e)
f)
Single-Quantum Well Laser
Multiple-Quantum Well Laser
Separate Confinement Heterostructure Laser
Graded-Index SCH Laser
Quantum Cascade Laser
Quantum Dot Laser
2.
Summary
3.
References and…
Quantum Lasers,
M. Momeni
QL
SQW L
MQW L
SCH L
GRINSCH L
QC L
QD L
2
1. Quantum Lasers
LASER = Light Amplification by Stimulated Emission of Radiation
Quantum Lasers,
M. Momeni
3
Single-Quantum Well Laser (SQWL)
Double
Heterostructure:
V>0
P
p
N
Eel
EC
EFn
hf
EFp
nm
EV
Ehole
Basic Laser condition:
fC ( EV  hf )  1  fV ( EV )
Quantum Lasers,
M. Momeni
or, alternatively,
EFn  EFp  EG
4
Refractive Index and Mode Profile
Homostructure
p+
Single Heterostructure (SHS) Double Heterostructure (DHS)
n+
P
p
n+
P
p
N
n
optical field
Electrical confinement is higher for a DHS
Quantum Lasers,
M. Momeni
Optical confinement is higher for a DHS
 lower Ith
5
Multiple-Quantum Well Laser (MQWL)
MQW using isotype SQW:
P
p
MQW DFB
P
EC
P
p
P
p
P
p
P
p
P
EV
mini bands
MQW DFB
Quantum Lasers,
M. Momeni
hf
hf
hf
hf
6
Separate Confinement Heterostructure (SCH)
p
InGaAs
InGaAsP
P
InP
EC
InGaAsP
x
Quantum Lasers,
M. Momeni
InP
InGaAsP
hf
5 nm
EV
cladding
N
SCH region
10 nm
MQW region
50 nm
SCH region
cladding
7
Graded-Index SCH Laser (GRINSCH L)
cladding
GRIN region
MQW region
GRIN region
cladding
EC
EG ( InP )
EG ( InGaAsP )
EG ( InGaAs )
EV
n
Quantum Lasers,
M. Momeni
x
8
Quantum Cascade Laser (QC L) — Principle
interband transition:
Eappl
intersubband transition:
Tunneling rate >> 3 = 1 ps
and 2 = 0.3 ps << 32 > 1 ps  population inversion
Quantum Lasers,
M. Momeni
9
QC Laser — -Tailoring
Quantum Lasers,
M. Momeni
10
QC Laser — Data
Data [1–5]:
L
Pout
[m]
3.4 – 80
operation
mode
T
[mW]
Jth [A/cm2] /
Eth [kV/cm]
first demo
[year]
$$$
200 – 300 (CW)
up to 1000 (PM)
250 – 290 /
7.5 – 48
PM or CW
on cooler
350 1994 AT&T (later)
Bell Labs
Material systems: GaAs based, InP based, Si / SiGe on GaSb, InAs / AlSb on GaSb
CW = continuous wave; PM = pulse mode
Applications [1–6]:
•
Military and Security
•
Commercial, Medical
•
Free-Space Optical Communication Systems and Astronomy
•
Gas detection based on laser spectroscopy with CW or pulsed QC DFB
lasers (chemical sensors)
Quantum Lasers,
M. Momeni
11
Quantum Dot Lasers (QD L) — 1. Principle
a) schematic view:
Quantum Lasers,
M. Momeni
b) tunneling-injection QD laser:
12
QD L — 2. Principle
p-cladding
OCL
QD
OCL
n-cladding
electrons
holes
a) Prevention of parasitic
recombination in the OCL
Quantum Lasers,
M. Momeni
b) “Limit case”
13
2. Summary
Quantum Lasers use the structures we have discussed so far in order to
1. optimize the properties of a simple Fabry-Perot Laser (L, R, g, ),
2. Increase efficiency ()
3. reduce the threshold current (Ith) and its temperature dependency,
4. change the wavelength of the laser beam (),
5. achieve continuous wave (CW) operation @ RT, and
6. increase the output power (P).
Fabrication:
1.
2.
Metallorganic chemical vapor deposition
Molecular beam epitaxy
Quantum Lasers,
M. Momeni
MOCVD
MBE
14
What we left out… (more presentations?)
Basics:
o
Quantum Effects (energy quantization, first and second order tunneling effect,…)
o
Simple Fabry Perot Laser (FPL) and characteristics
o
Concept of gain-guided (active) or index-guided (passive) lasers (wave guiding), e.g. in
buried heterostructure lasers (BHS), or separate lateral confinement (LC)
o
Distributed bragg reflector (DBR), distributed feedback bragg (reflector) (DFB)
R&D:

Blue Lasers or GaN Lasers

Tunable Lasers (TL) or Tunable Diode Lasers (TDL)

Vertical Cavity Surface Emitting Lasers (VCSEL)

Strained heterostructure QW lasers
Quantum Lasers,
M. Momeni
15
3. References (QC L)
[1] Sirtori C., Nagle J., “Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the
mid-far-infrared.” Comptes Rendus Physique, In Press, Corrected Proof, Sep. 2003
http://www.sciencedirect.com/science/article/B6X19-49FGMWM-6/2/299ee308e587b6215f4731fbe5cfd566
[2] Garciaa M., Normand E., Stanley C.R., Ironside C.N., Farmer C.D., Duxbury G., Langford N., "An
AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3.“
Optics Communications, In Press, Uncorrected Proof, Sep. 2003.
http://www.sciencedirect.com/science/article/B6TVF-49FXMFB-3/2/607fb52178f815aca3c266c7cf670524
[3] Köhler, R., Tredicucci A., Beltram F., Beere H.E., Linfield E.H., Davies A.G., Ritchie D.A., Iotti, R.C.,
Rossi F., "Terahertz semiconductor-heterostructure laser" letters to nature, vol. 417 no. 6885, pp. 156–159,
May 2002.
[4] Sirtori C., "Applied physics: Bridge for the terahertz gap." Nature news and views, vol. 417, no. 6885, pp.
132–133, May 2002.
[5] Beck M., Hofstetter D., Aellen T., Faist J., Oesterle U., Ilegems M., Gini E., Melchior H., “Continuous
wave operation of a mid-infrared semiconductor laser at room temperature.” Science, vol. 295, issue 5553,
pp. 301–305, Jan. 2002.
[6] Kosterev A.A., Tittel F.K., "Chemical Sensors Based on Quantum Cascade Lasers." IEEE Journal of
Quantum Electronics, vol. 38, no. 6, , pp. 582–591, June 2002.
Quantum Lasers,
M. Momeni
16
4. References (QD L)
[7] Asryan L.V., Luryi S., "Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability" IEEE
Journal of Quantum Electronics, vol. 37, no. 7, pp. 905–910, July 2001.
http://www.ee.sunysb.edu/~serge/177.pdf
http://www.ee.sunysb.edu/~serge/publist.pdf
[8] Asryan L.V., Luryi S., Suris R.A., "Internal Efficiency of Semiconductor Lasers With a Quantum-Confined
Active Region." IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 404–418, March 2003.
http://www.ee.sunysb.edu/~serge/191.pdf
[9] Pelton M., Yamamoto Y., "Ultralow threshold laser using a single quantum dot and a microsphere cavity."
Physical Review A, vol. 59, no. 3, pp. 2218–2241, March 1999.
[10] Maximov M.V., Asryan L.V., Shernyakov Yu.M., Tsatsul’nikov A.F., Kaiander I.N., Nikolaev V.V., Kovsh
A.R., Mikhrin S.S., Ustinov V.M., Zhukov A.E., Alferov Zh.I., Ledenstov N.N., Bimberg D., "Gain and
Threshold Characteristics of Long Wavelength Lasers Based on InAs/GaAs Quantum Dots Formed by
Activated Alloy Phase Separation." IEEE Journal of Quantum Electronics, vol. 37, no. 5, pp. 676–683, May
2001.
[11] Luryi S., Xu J.M., Zaslavsky A., Future Trends in Microelectronics: the Nano Millennium, Wiley-IEEE
Press, 2002, pp. 219–230.
http://www.ee.sunysb.edu/~serge/180.pdf
[12] Bludau, W. Halbleiter-Optoelektronik, München, Wien: Hanser, 1995, pp. 122–123, 151–155, 180–187.
Quantum Lasers,
M. Momeni
17
History of Lasers
Welch D.F., “A Brief History of High-Power Semiconductor Lasers.” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1470–
1477, Dec. 2000.
Laser history 1917–1996:
http://home.achilles.net/~jtalbot/history/
Laser at Bell Laboratories from 1958–1998:
http://www.bell-labs.com/history/laser/
Quantum Lasers,
M. Momeni
18
Where to find papers…
Where to look for articles on these topics: (use ScienceDirect & IEEE Xplore®)
IEEE
http://www.ieee.org/
IEEE Journal of Quantum Electronics
IEEE Photonics Technology Letters
IEEE Transactions on Electron Devices
IEEE Proceedings on Optoelectronics
Nature
http://www.nature.com/
Science
http://www.sciencemag.org/
Applied Physics Letters
http://ojps.aip.org/aplo/top.jsp
Laser Focus World
Elsevier
Quantum Lasers,
M. Momeni
http://lfw.pennnet.com/home.cfm
http://www.elsevier.com/locate/optcom
Elsevier Optics Communications
Elsevier Comptes Rendus Physique
19
…
Quantum Lasers,
M. Momeni
20
Wanna BUY a quantum laser?
Go online
Click on http://lfw.pennnet.com/home.cfm to get to Laser Focus World
Look for “Buyers Guide” in the left column and click on it!
Type the keywords! E.g. “Quantum Cascade Laser”
You’ll get a list with companies (in this case just one) offering a quantum
laser or something related to it, click on the entry and then the company’s
link!
You are transferred to the company’s website
BUY ALL YOU WANT OR ALL YOU NEED!
(datasheet, images etc. readily available)
Quantum Lasers,
M. Momeni
21
1. Example: Quantum Cascade Laser
Laser Components Instrument Group
Address:
10 Upton Drive
Wilmington, MA 01887
Phone:
978-658-9100
Fax:
978-658-1888
URL: www.laser-components.com
Email: [email protected]
Employees:
5
Year Founded: 1976
Job Openings: unfortunately no…
For prices, talk to Gary Hayes:
10.000 – 15.000 US $
This product is a…
HIGHLIGHT!
Quantum Lasers,
M. Momeni
22
2. Example: Single-Mode SQW GRINSCH L
For prices, call John Carry:
Axcel Photonics, Inc.
1 US $
Address:
45 Bartlett Street
Marlborough, MA 01752
Phone:
508-481-9200
Fax:
508-481-9261
URL:
http://www.axcelphotonics.com/
Email:
[email protected]
Employees:
18
N
Job Opening:
Office Manager
Quantum Lasers,
M. Momeni
per mW, up to 500 mW
n
E
23
Pricelist (all in US Dollars)
•
MQW DFB Structures:
InGaAsP MQW DFB Structure @ 1550 nm
InGaAsP MQW DFB Structure @ 1310 nm
779.35
467.00
MQW DFB
(more than 600 $ off if you choose a FP!)
AlGalnP Index guided MQW structures
•
VCSEL Structures:
•
Blue Laser
•
Quantum Cascade Lasers
8.00 (for each of 50)
– 26.00 (for a single one)
Module
System
Sources: INTELITE, Inc.
Thorlabs GmbH
Laser Components Instrument Group
Axcel Photonics, Inc.
Quantum Lasers,
M. Momeni
24.00 – 189.70
1,795.00 – 2,695.00
2,195.00 – 9,495.00
VCSEL
astronomical, even for the diode only
http://www.intelite.com
http://www.thorlabs.com/index.cfm
www.laser-components.com
http://www.axcelphotonics.com/
24
Abbreviations (Alphabetical Order)
BHS / BH
Buried Heterostructure
CW
Continuous Wave
QL
Quantum Laser
DBR
Distributed Bragg Reflector
QW
Quantum Well
DFB
Distributed Feedback Bragg
SCH
Separate Confinement Heterostructure
DHS
Double Heterostructure
SQW
Single-Quantum Well
FP
Fabry Perot
QC
Quantum Cascade
GRINSCH
Graded-Index SCH
QD
Quantum Dot
LASER
Light Amplification by Stimulated
Emission of Radiation
SHS
Single Heterostructure
LC
Lateral Confinement
SLC
Separate Lateral Confinement
MQW
Multiple-Quantum Well
TL
Tunable Lasers
OLC
Optical Confinement Layer
TDL
Tunable Diode Lasers
PM
Pulse Mode
VCSEL
Vertical Cavity Surface Emitting Lasers
Quantum Lasers,
M. Momeni
25
For those who want to know more…
Tutorial on Semiconductor Lasers
Quantum Lasers,
M. Momeni
26