CHAPTER 6 CONTINUOUS PROBABILITY DISTRIBUTIONS
Download
Report
Transcript CHAPTER 6 CONTINUOUS PROBABILITY DISTRIBUTIONS
Anderson
u
Sweeney
u
Williams
CONTEMPORARY
BUSINESS
STATISTICS
WITH MICROSOFT EXCEL
u Slides Prepared by JOHN LOUCKS u
© 2001 South-Western/Thomson Learning
Slide 1
Chapter 6
Continuous Probability Distributions
Uniform Probability
Distribution
Normal Probability
Distribution
Exponential Probability
Distribution
Slide 2
Continuous Probability Distributions
f(x)
x
Slide 3
Continuous Probability Distributions
A continuous random variable can assume any value
in an interval on the real line or in a collection of
intervals.
It is not possible to talk about the probability of the
random variable assuming a particular value.
Instead, we talk about the probability of the random
variable assuming a value within a given interval.
The probability of the random variable assuming a
value within some given interval from x1 to x2 is
defined to be the area under the graph of the
probability density function between x1 and x2.
Slide 4
Uniform Probability Distribution
A random variable is uniformly distributed whenever
the probability is proportional to the interval’s length.
Uniform Probability Density Function
f(x) = 1/(b - a) for a < x < b
=0
elsewhere
Expected Value of x
E(x) = (a + b)/2
Variance of x
Var(x) = (b - a)2/12
where: a = smallest value the variable can assume
b = largest value the variable can assume
Slide 5
Example: Slater's Buffet
Uniform Probability Distribution
Slater customers are charged for the amount of salad
they take. Sampling suggests that the amount of
salad taken is uniformly distributed between 5
ounces and 15 ounces.
• Probability Density Function
f(x) = 1/10 for 5 < x < 15
=0
elsewhere
where:
x = salad plate filling weight
Slide 6
Example: Slater's Buffet
Uniform Probability Distribution
What is the probability that a customer will take
between 12 and 15 ounces of salad?
f(x)
P(12 < x < 15) = 1/10(3) = .3
1/10
x
5
10 12
15
Salad Weight (oz.)
Slide 7
Example: Slater's Buffet
Expected Value of x
E(x) = (a + b)/2
= (5 + 15)/2
= 10
Variance of x
Var(x) = (b - a)2/12
= (15 – 5)2/12
= 8.33
Slide 8
Normal Probability Distribution
Graph of the Normal Probability Density Function
f(x)
x
Slide 9
Normal Probability Distribution
Characteristics of the Normal Probability
Distribution
• The shape of the normal curve is often illustrated
as a bell-shaped curve.
• Two parameters, (mean) and s (standard
deviation), determine the location and shape of
the distribution.
• The highest point on the normal curve is at the
mean, which is also the median and mode.
• The mean can be any numerical value: negative,
zero, or positive.
… continued
Slide 10
Normal Probability Distribution
Characteristics of the Normal Probability
Distribution
• The normal curve is symmetric.
• The standard deviation determines the width of
the curve: larger values result in wider, flatter
curves.
• The total area under the curve is 1 (.5 to the left of
the mean and .5 to the right).
• Probabilities for the normal random variable are
given by areas under the curve.
Slide 11
Normal Probability Distribution
% of Values in Some Commonly Used Intervals
• 68.26% of values of a normal random variable are
within +/- 1 standard deviation of its mean.
• 95.44% of values of a normal random variable are
within +/- 2 standard deviations of its mean.
• 99.72% of values of a normal random variable are
within +/- 3 standard deviations of its mean.
Slide 12
Normal Probability Distribution
Normal Probability Density Function
1
( x ) 2 / 2s 2
f ( x)
e
2 s
where:
= mean
s = standard deviation
= 3.14159
e = 2.71828
Slide 13
Standard Normal Probability Distribution
A random variable that has a normal distribution
with a mean of zero and a standard deviation of one
is said to have a standard normal probability
distribution.
The letter z is commonly used to designate this
normal random variable.
Converting to the Standard Normal Distribution
z
x
s
We can think of z as a measure of the number of
standard deviations x is from .
Slide 14
Using Excel to Compute
Normal Probabilities
Excel has two functions for computing probabilities
and z values for a standard normal distribution:
• NORMSDIST is used to compute the cumulative
probability given a z value.
• NORMSINV is used to compute the z value given
a cumulative probability.
(The letter S in the above function names reminds us
that they relate to the standard normal probability
distribution.)
Slide 15
Using Excel to Compute
Normal Probabilities
Formula Worksheet
1
2
3
4
5
6
7
8
9
A
B
Probabilities: Standard Normal Distribution
P (z < 1.00)
P (0.00 < z < 1.00)
P (0.00 < z < 1.25)
P (-1.00 < z < 1.00)
P (z > 1.58)
P (z < -0.50)
=NORMSDIST(1)
=NORMSDIST(1)-NORMSDIST(0)
=NORMSDIST(1.25)-NORMSDIST(0)
=NORMSDIST(1)-NORMSDIST(-1)
=1-NORMSDIST(1.58)
=NORMSDIST(-0.5)
Slide 16
Using Excel to Compute
Normal Probabilities
Value Worksheet
1
2
3
4
5
6
7
8
9
A
B
Probabilities: Standard Normal Distribution
P (z < 1.00)
P (0.00 < z < 1.00)
P (0.00 < z < 1.25)
P (-1.00 < z < 1.00)
P (z > 1.58)
P (z < -0.50)
0.8413
0.3413
0.3944
0.6827
0.0571
0.3085
Slide 17
Using Excel to Compute
Normal Probabilities
Formula Worksheet
A
B
Finding z Values, Given Probabilities
z value with .10 in upper tail
z value with .025 in upper tail
z value with .025 in lower tail
=NORMSINV(0.9)
=NORMSINV(0.975)
=NORMSINV(0.025)
Slide 18
Using Excel to Compute
Normal Probabilities
Value Worksheet
A
B
Finding z Values, Given Probabilities
z value with .10 in upper tail
z value with .025 in upper tail
z value with .025 in lower tail
1.28
1.96
-1.96
Slide 19
Example: Pep Zone
Standard Normal Probability Distribution
Pep Zone sells auto parts and supplies including a
popular multi-grade motor oil. When the stock of this
oil drops to 20 gallons, a replenishment order is placed.
The store manager is concerned that sales are being
lost due to stockouts while waiting for an order. It has
been determined that leadtime demand is normally
distributed with a mean of 15 gallons and a standard
deviation of 6 gallons.
The manager would like to know the probability of a
stockout, P(x > 20).
Slide 20
Example: Pep Zone
Standard Normal Probability Distribution
The Standard Normal table shows an area of .2967 for
the region between the z = 0 and z = .83 lines below.
The shaded tail area is .5 - .2967 = .2033. The
probability of a stockout is .2033.
Area = .2967
z = (x - )/s
= (20 - 15)/6
= .83
Area = .5 - .2967
= .2033
Area = .5
0
.83
z
Slide 21
Example: Pep Zone
z
Using the Standard Normal Probability Table
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
.4
.1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
.5
.1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
.6
.2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549
.7
.2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
.8
.2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
.9
.3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
Slide 22
Example: Pep Zone
Standard Normal Probability Distribution
If the manager of Pep Zone wants the probability of a
stockout to be no more
than .05, what should the
reorder point be?
Area = .05
Area = .5 Area = .45
z.05
0
Let z.05 represent the z value cutting the .05 tail area.
Slide 23
Example: Pep Zone
Using the Standard Normal Probability Table
We now look-up the .4500 area in the Standard
Normal Probability table to find the corresponding
z.05 value.
z
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
z.05 = 1.645 is a reasonable estimate.
.
Slide 24
Example: Pep Zone
Standard Normal Probability Distribution
The corresponding value of x is given by
x = + z.05s
= 15 + 1.645(6)
= 24.87
A reorder point of 24.87 gallons will place the
probability of a stockout during leadtime at .05.
Perhaps Pep Zone should set the reorder point at
25 gallons to keep the probability under .05.
Slide 25
Using Excel to Compute
Normal Probabilities
Excel has two functions for computing cumulative
probabilities and x values for any normal distribution:
• NORMDIST is used to compute the cumulative
probability given an x value.
• NORMINV is used to compute the x value given a
cumulative probability.
Slide 26
Using Excel to Compute
Normal Probabilities
Formula Worksheet for Pep Zone Example
1
2
3
4
5
6
7
8
A
B
Probabilities: Normal Distribution
P (x > 20) = =NORMDIST(20,15,6,TRUE)
Finding x Values, Given Probabilities
x value with .05 in upper tail = =NORMINV(0.95,15,6)
Slide 27
Using Excel to Compute
Normal Probabilities
Value Worksheet for Pep Zone Example
1
2
3
4
5
6
7
8
A
B
Probabilities: Normal Distribution
P (x > 20) = 0.7977
Finding x Values, Given Probabilities
x value with .05 in upper tail = 24.87
Note: P(x > 20) = .7977 here using Excel, while our
previous manual approach using the z table yielded
.7967 due to our rounding of the z value.
Slide 28
Exponential Probability Distribution
Exponential Probability Density Function
1 x /
f ( x) e
for x > 0, > 0
where:
= mean
e = 2.71828
Cumulative Exponential Distribution Function
P ( x x0 ) 1 e xo /
where:
x0 = some specific value of x
Slide 29
Using Excel to Compute
Exponential Probabilities
Formula Worksheet
A
B
Probabilities: Exponential Distribution
1
2
3 P (x < 18) =
=EXPONDIST(18,1/15,TRUE)
4 P (6 < x < 18) = =EXPONDIST(18,1/15,TRUE)-EXPONDIST(6,1/15,TRUE)
5 P (x > 8) =
=1-EXPONDIST(8,1/15,TRUE)
6
Slide 30
Using Excel to Compute
Exponential Probabilities
Value Worksheet
A
B
Probabilities: Exponential Distribution
1
2
3 P (x < 18) =
0.6988
4 P (6 < x < 18) = 0.3691
5 P (x > 8) =
0.5866
6
Slide 31
Example: Al’s Carwash
Exponential Probability Distribution
The time between arrivals of cars at Al’s
Carwash follows an exponential probability
distribution with a mean time between arrivals of 3
minutes. Al would like to know the probability that
the time between two successive arrivals will be 2
minutes or less.
P(x < 2) = 1 - 2.71828-2/3 = 1 - .5134 = .4866
Slide 32
Example: Al’s Carwash
Graph of the Probability Density Function
f(x)
.4
.3
P(x < 2) = area = .4866
.2
.1
x
1
2
3
4
5
6
7
8
9 10
Time Between Successive Arrivals (mins.)
Slide 33
Using Excel to Compute
Exponential Probabilities
Excel’s EXPONDIST function can be used to compute
exponential probabilities.
The function has three arguments:
• First – the value of the random variable x
• Second – 1/m (the inverse of the mean number of
occurrences in an interval)
• Third – “TRUE” or “FALSE” (we will always enter
“TRUE” because we’re seeking a cumulative
probability)
Slide 34
Using Excel to Compute
Exponential Probabilities
Formula Worksheet
1
2
3
4
A
B
Probabilities: Exponential Distribution
P (x < 2) =
=EXPONDIST(2,1/3,TRUE)
Slide 35
Using Excel to Compute
Exponential Probabilities
Value Worksheet
1
2
3
4
A
B
Probabilities: Exponential Distribution
P (x < 2) =
0.4866
Slide 36
Relationship between the Poisson
and Exponential Distributions
(If) the Poisson distribution
provides an appropriate description
of the number of occurrences
per interval
(If) the exponential distribution
provides an appropriate description
of the length of the interval
between occurrences
Slide 37
End of Chapter 6
Slide 38