Nik Addleman and Jenn Fox
Download
Report
Transcript Nik Addleman and Jenn Fox
Nik Addleman and Jen Fox
Traditional SIR Model
Susceptible, Infected and Recovered
S' = - ßSI
I' = ßSI - γI
R' = γI
Assumptions
S and I contact leads to infection
Infection is a disease, allows for recovery (or death…)
Fixed population
Jacobian Analysis
S' = - ßSI = 0
I' = ßSI – γI = 0
R' = γI = 0
æ -b I, b S, 0 ö
ç
÷
J = ç b I, b S - g , 0 ÷
ç
÷
è 0, g , 0 ø
bS
C0 =
g
Equilibrium points: I = S = 0, R = R*
Example of SIR Model
Infectious contact rate
S
β = # daily contacts *
transmission
probability given a
contact
Infectious Period
γ= time until recovered
and no longer
infectious
t
Extensions
Vaccinations
Vaccinated members of susceptible pop.
are not as likely to contract disease
Temporary infective/immunity periods
Modeling Influenza
Modeling Seasonal Influenza Outbreak in a Closed
College Campus. (K. L. Nichol et al.)
Compartmentalized, fixed-population ODE model
Modification of the SIR model
Minimize Total Attack Rate
Experimentally determine
parameters
Compartments
Students and Faculty
Vaccinated versus Unvaccinated
Symptomatic and Asymptomatic infections
Different β and γ values for various populations
Categories (following slide)
Four susceptible categories
Eight infected
One recovered
Constructing Equations
Determining parameters
β varies between students/faculty and
symptomatic/asymptomatic
γ has different values for symptomatic/asymptomatic
and vaccinated/unvaccinated populations
Vaccine 80% effective
Apply to all compartments
Susceptible
dSvs
= -(.2)Svs (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf Inwf + bnof I nof )
dt
dSns
= -Sns (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof
dt
dSvf
dt
dSnf
dt
= -(.2)Svf (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof )
= -Snf (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof )
Infectious
dI vws
= j (.2)Svs (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof ) - g vws I vws
dt
dI vos
= (1- j )(.2)Svs (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof ) - g vos I vos
dt
dI nws
= j (.2)Sns (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof ) - g nws I nws
dt
dI nos
= (1- j )(.2)Sns (bvws I vws + bvos I vos + bnws I nws + bnos I nos + bvwf I vwf + bvof I vof + bnwf I nwf + bnof I nof ) - g nos I nos
dt
… etc
Conclusions
Can use SIR model to determine best way to cut
down on infections
Stay home when you are sick because you are
infectious. Gross.
Get vaccinated!
Even late vaccinations are effective
Vaccine helps you and those around you
60% vaccination means none of us gets sick