Transcript chamberland
Part I
Physicists do it in
Hospital
Tong Xu
Dept. of Physics
Carleton University
Why there are physicists in the
hospital?
Medical Physicists
Where
in the hospital can you find them?
Diagnosis imaging departments:
• Radiology and Nuclear Medicine (CT, MRI, PET…)
Cancer centre
• Medical Physics department (Radiotherapy)
What
is their job?
Make sure the equipments are working
according to their physics specifications
Perform radiotherapy treatment planning
Why we need physicists
to perform these tasks?
Let’s to go back to the history of
some of the medical technologies.
Related Medical Technologies
Three examples …
X-ray CT
Magnetic Resonance Imaging
Radiation Therapy
Discovery of X-ray
First discovered by
German Physicist
Wilhelm C. Röntgen
in 1895
On a New Kind of Rays Nature 53, 274-276 (23 January 1896)
Discovery of X-ray
Independently
discovered by Nikola
Tesla in 1896
Discovery of x-ray
1. Crookes Tube
Invented
by Sir William
Crookes, chemist and
physicist, around
1860s.
A demonstration of the
cathode ray –
accelerated electron
beam.
Discovery of x-ray
2. Cathode ray
Cathode ray is a
beam of electrons
Discovery of x-ray
3. Rontgen’s experiment
A mystery radiation was
coming out from the tube
Röntgen called it
X-ray
In fact, x-ray is just a ray of light
photons with much higher energy than
ordinary light
Typical x-ray spectrum
Medical Application of x-ray
Röntgen received the
First Physics Nobel price in 1901
X-ray radiograph
It’s a shadow image of human
What do we need to see
through a human?
X-ray
X-ray Computer tomography
X-ray projections of heart
CT Image reconstruction
Projections at different angle
3D structure
http://rpop.iaea.org/
Inventers
Theory
proposed by a physicist Allan
MacLeod Cormack in1956
two papers in the Journal of Applied Physics
in 1963 and 1964
First
Prototype by electrical engineer
Godfrey Hounsfield in 1969
The first CT prototype
First Prototype by Godfrey Hounsfield in 1969
Cormack and Hounsfield shared
the Medical Nobel prize in 1979
Magnet Resonance Imaging
1. Stern molecule beam (1922)
Individual gas molecules fly through a pair of magnets
developed by German Physicist Otto Stern and Walther Gerlach in 1922
Magnet Resonance Imaging
2. Some nucleus are like tiny
magnets
Detector
N
S
N
S
Magnet Resonance Imaging
2. Some nucleus are like tiny
magnets
Detector
N
S
N S
S N
N
S
Otto Stern received
Physics Nobel prize in 1943
Magnet Resonance Imaging
3. Precession of magnetic dipoles
Some
They
nuclear has magnetic momentum
are like magnetic dipoles
They
precess around the external
magnetic field
Just like a Gyroscope
Check out this animation
http://www.simplyphysics.com/MRI_shockwave.html
B
Magnet Resonance Imaging
3. Precession of magnetic dipoles
The precession frequency
B
ω is in the radio frequency range
is the Gyromagnetic ratio
B
Magnet Resonance Imaging
3. Precession of Magnetic dipoles
Aligned with the external
Magnetic field B
Lower energy state
B
Aligned against the external
Magnetic field B
Higher energy state
The nucleus feel more comfortable to stay in lower energy state
Magnet Resonance Imaging
4. Nuclear Magnetic Resonance
What if I send nucleurs
a Radio wave that has
the same frequency as
the precession?
American physicist Isador I. Rabi had an great idea!
Magnet Resonance Imaging
4. Nuclear Magnetic Resonance
Detector
N
S
Radio frequency signal ~
N
S
Magnet Resonance Imaging
4. Nuclear Magnetic Resonance
The nucleus will resonance with the RF wave
They absorb RF energy
And flip to higher energy state
Can measure the nuclear magnetic montemtum
precisely
Isador I. Rabi received
Physics Nobel prize in 1944
Magnet Resonance Imaging
5. NMR with solids and liquids
In
1946, two other Americans, Edward M.
Purcell and the Swiss-born Felix Bloch,
separately apply this nuclear magnetic
resonance (NMR) method to solids and
liquids.
Purcell and Bloch received
Physics Nobel prize in 1952
Principle of NMR
Resonance frequency
B
Since the gyromagnetic ratio γ is unique for nucleus of each elements
Nuclear Magnetic Resonance is a powerful tool for chemical analysis
Until 1970s….
Magnet Resonance Imaging
5. Apply NMR to imaging
Paul
Lauterbur & Peter Mansfield applied
NMR to image body in 1970s
Introduced
Thus,
gradients to the magnetic field
frequency the radio wave emitted by
the nucleus tell us where they are.
Magnetic Resonance Imaging
MRI scanner
Source: sfu.ca
MRI
A technique for imaging soft tissues
source: lecture slides from Prof. I. Cameron
Lauterbur and Mansfield received
Medical Nobel prize in 2003
Nuclear Medicine
x-ray CT
Chest X-ray
Cancer diagnosis
http://www.dcmsonline.org/
Physics in Cancer
treatment
Radiation Therapy
Uses
Kills
cells
ionizing radiation
tumour by damaging tumour
Radiation therapy
External beam radiation therapy
Use
x-ray generated from linear
accelerator.
Max energy: 4~20 (MeV, 106 eV)
Mega-Electron-Volt
Compare to visible light: 2-3 eV
Compare to UV light: 3-5 eV
1000,000 times higher than UV light
Linear accelerator (Linac)
Accelerated high energy
electron beam hit a
Tungsten target
Produce high energy
x-ray beam
Source:
www.cerebromente.org.br
Treatment planning
It’s also a job for
physicists !
X-ray , electrons, photons, scatter
radiation dose …
Only a medical physicist were trained
to deal with them !
Summary
Many
medical technologies are originated
from physics discovery.
Then,
developed by physicists.
Medical
physicists are
The “customer service” team
Improve the techniques
Develop new techniques
Ionizing radiation
Ionizing
radiation damages the
cell
Electron
x-ray photons
DNA
Ionizing radiation
X-ray photon
DNA
Excited by
physics discoveries
Passionate about
People’s well being
Positron Emission Tomography
(PET)
http://www.mni.mcgill.ca/cog/paus/techniques.htm
PET image
How is x-ray been generated?
1. Bremsstrahlung radiation
How is x-ray been generated
2. Characteristic x-ray radiation
Part II
Positron Emission Tracking
(PeTrack): the prototype and
its evaluations
Tong Xu, Marc Chamberland, Benjamin
Spencer, Simon Massad
Carleton University, Ottawa, Canada
Outline
Introduction
Concept of PeTrack
Simulation study and results
The prototype the evaluation
Conclusion
External beam Radiation
therapy
http//www.stfranciscare.org
Radiation delivery
requirement
Deliver
tumour
high radiation dose to
Minimize
radiation to healthy
tissue around the tumour
Accurate delivery of
x-ray beam
3 Tricks...
Trick #1:
Focusing multiple beams
Trick #2:
Collimate the beam to the
shape of tumour
This method is called
3D-conformal radiation therapy
(3D-CRT)
3D conformal Radiation
therapy (3D-CRT)
Shape the field following the outline of tumor
Trick #3:
Intensity modulation
inside the field
This is one step forward of 3D-CRT, with
the addition of intensity modulation
inside the field.
Intensity modulated radiation therapy
(IMRT)
3D-CRT
Intensity is uniform
inside the field
Tumour
Spinal cord
IMRT
Intensity is not uniform
inside the field
Accuracy of radiation
therapy
Significant development has been
done in diagnose and delivery
techniques (PET, SPECT, IMRT…)
The tumor motion remains a limiting
factor.
The moving target
Tumour moves due to:
Respiration
Cardiac beating
Other visceral motions
The tumor can move by
more than 3 cm !
Three level of motion
management
None
Radiation field
Breath holding or
Respiratory gating
Real-time
tumor tracking
Motion management
Breath holding
Respiratory gating
Breath holding
Methods:
– Self breath holding
– Active breathing control device
Limitations
– Reproducibility (up to 6 mm residual
motion)
– Difficult for Lung cancer patient to
tolerate
Respiratory gating
Breath normally!
Uses:
External markers
Implanted internal markers
Others
– Spirometry
– Temperature sensor
– Strain gauge
…
Respiratory gating
Gating Thresholds
On
Linac
Beam Off
Berbeco et al. 2005
External markers
Tang et al. 2004
Correlation between
external and internal motion
Koch et al 2004
Unstable breathing
Ozhasoglu et al. 2002
Phase shift
Ozhasoglu et al. 2002
Internal markers
Implanted in or close to tumor
Invasive
Provide exact location of tumor
Internal marker tracked
by x-ray Shirato et al. 2000
Image detector
X-ray tube
Radiation dose from the xray fluoroscopy Shirato et al. 2004
Up to 1.2 Gy skin dose per hour of
treatment time
Not feasible for intensity modulated
radiation therapy
– 20 – 30 minutes /fraction
– large volume of normal tissue 25-30% of tumor
dose!
Calypso® 4D Localization
System (EM marker)
MRI artifacts of EM
transponders X Zhu et al, 2009
RealEye tracking system
Shchor et al 2010
RealEye tracking system
Can only track one marker
Can not be used for 10MV beam or
higher due to induced radioactivity
Tracking with Positron
emission marker
Miniature markers ( 0.8 mm)
Labeled with positron emission
isotopes (0.1 mCi)
Track markers by detecting
annihilation gamma
PeTrack
PeTrack is NOT PET
Over-all image resolution of PET : 4 - 8 mm
(Clinical Whole body PET)
Can PET system locates
an object with <1 mm
accuracy?
Yes, if the geometry of the
source is known
Find a point in 3D with the minimum summed
distance to the coincident lines
It is NOT image reconstruction !
Localize PeTrack marker
Patient
Detector
Detector
PeTrack system for tumor
tracking
Linac
PeTrack detectors
Positron
emission
Marker
PeTrack Detector
modules
Detector
module
PeTrack marker and
isotopes
I-124
T1/2
(days)
β+
Fraction
As-74 Rb-84
4.2
18
32
23%
29%
23%
Can be implanted with biopsy needle of
size 18 Gauge (1.27 mm)
The challenge
The algorithm
Classify the coincident lines using
Mixture-of-Gaussians clustering
technique
Determine the position of each
markers from its coincident line cluster
Find the true location
with iteration
Initial estimation
Computer simulation results
Based on a Monte Carlo
simulation package: GEANT4.
Four markers were simulated
Localization precision
Localization error (mm)
1.5
1.0
0.5
0.0
0
50
100
150
200
Coincidient Lines per marker
250
Dynamic Thorax Phantom
Phantom rod
Marker
Direction
of motion
RMSE
(mm)
AP
0.30
LR
0.20
IS
0.14
0.997
AP
0.42
0.636
LR
0.26
IS
0.17
0.997
AP
0.29
0.969
LR
0.25
IS
0.13
1
2
3
Average
0.24
3D RMSE
(mm)
R2
0.844
0.39
0.53
0.40
0.954
0.812
0.986
0.998
0.44
-
The PeTrack Prototype
BGO crystal and
Position Sensitive PMT
Single Marker
Motion trace of the marker
along the three coordinate axes
20
x
y
z
Sine fit - x
Sine fit - y
Sine fit - z
Position (mm)
10
0
-10
0
50
100
Time (s)
150
200
Adj.
R2
Measured
amplitude
(mm)
Expected
value
(mm)
Error
(mm)
x
0.99
9.63 ± 0.05
10.00
-0.37
y
0.99
5.16 ± 0.04
5.34
-0.18
z
0.81
0.65 ± 0.02
0.67
-0.02
3D track of two markers
15
10
Z Axis
5
0
-5
-10
10
-15
15
5
0
10
-5
5
-10
0
-15
-20
-5
xis
XA
Positions of one of the
marker
X
Y
Z
position (mm)
15
10
5
0
-5
0
10
20
30
Time(s)
40
50
60
Two markers precision
Standard deviation of the distance
between the two marks during the
motion tracking: 0.73 mm
Estimated precision: 0.52mm
Conclusion
PeTrack can perform tracking of
multiple fiducial markers with sub-mm
precision
It is a potential technique for achieve
hyperfractionation treatment for
moving tumors.
Acknowledgement
Dr. Richard Wassenaar
Nathan Churchill, University of Toronto
Supported by Natural Sciences and
Engineering Research Council of
Canada
Thank you!
Tracking of a single Line
marker
Life time dose
(0.1 mCi marker)
Isotope
124I
74As
84Rb
Half life (days)
4.2
18
32
dose (Gy) @ 5 mm (volume: 0.5cc)
2.6
9.0
18.6
dose (Gy) @ 10mm (volume: 4.2cc)
0.7 2.46
4.96
dose (Gy) @ 15mm (volume: 14 cc)
0.32 1.09
2.24
As compared with x-ray
fluoroscopy dose
Higher maximum dose
Very small volume effected (~ 10 cc
vs 1000 cc
Can be implanted inside the tumor
Precision
5.0 mm PET spatial resolution provides 0.5
mm localization precision
With only about 100 events!
Precision
PET spatial resolution
Number of coincident lines
PeTrack data
Predicted motion (100 ms latency)
Predicted motion (200 ms latency)
IS position (mm)
LR position (mm)
AP position (mm)
0
-10
Motion trace of marker
#3 and predicted
motion trace
80
70
10
0
0
5
10
Time (s)
15
20
2250
100 ms latency
Mean = 0.0
S.D. = 0.8
Count
1500
750
0
200 ms latency
Mean = 0.0
S.D. = 0.9
Count
1800
1200
600
0
-4
-2
0
2
1D prediction error (mm)
4
Distribution of the
1D prediction error
500
100 ms latency
Count
400
Mean = 1.3
S.D. = 0.6
95th percentile (100 ms) = 2.3 mm
300
200
100
0
400
200 ms latency
Mean = 1.4
S.D. = 0.7
Distribution of the
3D prediction error
Count
300
200
95th percentile (200 ms) = 2.7 mm
100
0
0
2
3D prediction error (mm)
4
Latency
(s)
1D pred.
error
(mm)
3D pred.
error
(mm)
0.1
0.0 ± 0.8
1.3 ± 0.6
0.2
0.0 ± 0.9
1.4 ± 0.7
Life time dose
Activity = 0.1 mCi
Sensitivity within the
Field of view
Frame based stereotactic
neurosurgery
http://www.elekta.com/healthcare_international_stereotactic_neurosurgery.php
Fiducial-less tracking
Schweikard et. al. 2004
Synthetic a serial of CT at different time
points by deforming two CT scans : Inhale
and exhale
Registration of real-time x-ray projections
with digitally reconstructed images from
Synthetic CT scans
Registration computing time: 5 -10 sec
Accuracy depends on the deforming model
of lung
Physical Requirement of tumor
tracked radiation therapy
Track the tumor in real-time
Predict the tumor position to account
for the lag of delivery system
Fast reaction of delivery system
Current internal tracking
techniques
X-ray marker
Sampling rate
Precision
Marker size
30 sec-1
EM marker
10 sec-1
0.5 mm
0.2 mm
Φ0.8~1.6mm
Φ1.8mm x 8.
mm cylinder
Radiation dose Upto 1.2 G/h
Zero
Correlation between
external and internal motion
Ozhasoglu et al. 2002
Complex tumor trajectory
Ozhasoglu et al. 2002
Correlation coefficient (R)
Koch et al. 2004
Spirometry
Hoisak et al. 2004
Higher correlation (R= 0.51 - 0.99)
than that of skin marker (R= 0.39 –
0.98)
Difficult to tolerate
Radiation dose from the xray fluoroscopy Shirato et al. 2004
External markers -1
Passive or active infrared skin markers
Marker position tracked by camera in
real time
Linac gated by the position of external
markers
Linear accelerator
generate pulsed x-ray
Pulse frequency
–
100 – 400 Hz
Pulse width
–
1 – 10 μs
Blanking of PeTrack
detector
Expected data acquisition duty cycle > 80%
PMT HV gating
Expectation-Maximization -1
Expectation step. Compute the
probabilities for all trajectories,
n=1,…N, belonging to each cluster,
k=1,…K
p
(i )
n,k
(i )
(i )
(i )
ak G d (Tn , mk ) , k
K
(i )
(i )
(i )
a j G d (Tn , m j ) , j
j 1
Expectation-Maximization -2
Maximization step. Update
parameters
N
(i1) (i )
mk mk Vk
a
( i 1)
k
(i ) 2
(i )
pn,k d (Tn , mk )
N
k(i1)
p
n 1
N
p
n 1
(i )
n ,k
n 1
N
(i )
n ,k
Previous works
Gundogdu, 2005
Intended for industrial application
Two particle was tracked
Resolution 20 -30 mm
The challenge
Simultaneously tracking of three or
more markers
Distance between markers: a couple
centimeters
The existing algorithm for single
particle tracking dose not apply
Scatter rejection
Patient
R=2σ
Expectation-Maximization
iterations
1.
Initial estimation
2.
Expectation
3.
Maximization
4.
Clustering by the probability of each trajectory
Update the position of markers
Repeat step 2 and 3 until converge.
Speed of the algorithm
Four markers
400 coincident events
2.8GHz P4
20 ms/run
Tumor position can be updated at a
rate > 10 Hz
Lift time dose for different
treatment duration
Required activity at the
time of implanting
Breath holding
Methods:
– Self breath holding
– Active breathing control device
Limitations
– Reproducibility (up to 6 mm residual
motion)
– Difficult for Lung cancer patient to
tolerate
Respiratory gating
Breath normally!
Uses:
External markers
Implanted internal markers
Others
– Spirometry
– Temperature sensor
– Strain gauge
…
Respiratory gating
Gating Thresholds
On
Linac
Beam Off
Berbeco et al. 2005
External markers
Tang et al. 2004
Correlation between
external and internal motion
Koch et al 2004
Unstable breathing
Ozhasoglu et al. 2002
Phase shift
Ozhasoglu et al. 2002
Identify failed markers
A failed marker should be identified
automatically from the output of the algorithm
ak Relative activity of marker # k
k
Root mean square distance form
marker # k to its trajectories
Identify failed markers
k> 3 mm
ak< 0.02
Identify failed markers
with criteria
The source of tumor
motion
Respiration
Cardiac beating
Other visceral motions
Lung tumor motions
trajectories
Seppenwoolde et al. 2002
Internal marker tracked
by x-ray Shirato et al. 2000
Image detector
X-ray tube
Internal marker tracked
by x-ray Shirato et al. 2000
Positron emission and
annihilation
Positron Emission
Tomography (PET)
http://www.mni.mcgill.ca/cog/paus/techniques.htm
PET image
Physical limits on PET
resolution
Over-all resolution: 4 - 8 mm
(Whole body PET)
Humm et al, 2003
http://www.raytest.de/pet/clearPET/clearPET.html
Three 22Na Markers
Activity of 22Na: ~425 kBq/marker
AP
Rotation in AP/LR plane
25.6 mm
6.9 mm
11.3 mm
LR
Acrylic block
Acrylic disk
Active core
(22Na)
PET Image reconstruction
http://depts.washington.edu/nucmed/IRL/pet_intro/intro_src/section4.html
Yes! A single point source
can be tracked with < 1
mm accuracy
Park et al. 1993, Park et al. 2002
The algorithm
Assuming the distance from a marker to its
annihilation coincident lines follows a
Gaussian distribution
Standard deviation ~ system spatial
k resolution
Methods
PeTrack simulation model
Based on a Monte Carlo simulation package:
GEANT4
Patient: Φ 30cm x 60 cm water phantom
Distance from isocenter to detectors: 50 cm
Detector: 40x40 array of 4x4x30 mm3 BGO
crystals
Energy resolution: 25%
Spatial resolution ~ 4 mm
PeTrack simulation model
Marker: active 0.4 mm spherical core
with a 0.2 mm thick gold shell
Single marker simulation:
– Sensitivity, scatter fraction, dose
Four markers with I-124 were placed
around isocenter: (0,0,0), (15,0,0), (0,
20,0), (0,0,20) (in mm)
– Evaluate the algorithm
Definition of a valid event
(trajectory)
Detected energies fall in
the energy window (420600 keV)
Coincidence has to be
between detector A1 and
A2, or between B1 and B2
Simulate the initial
estimation error
Error on the initial estimation
– patient setup
– respiration
– marker migration
Initial estimation is generated
randomly around the true position
– ± 5, ± 10 , ± 15 mm
1000 runs of the algorithm
Definition of success
marker and run
Localized by the algorithm within 1.5 mm
from its true position
A successful run:
– All four markers was allocated successfully
Precision:
– Mean error among 1000 runs from the true
positions
Run success rate
100
Run success rate (%)
90
80
70
60
50
± 5 mm initial error
±10mm initial error
±15mm initial error
40
30
20
0
200
400
600
800
Coincident
lineslines
per per
marker
Total coincident
run
1000
Marker success rate
Mareker success rate (%)
100
95
90
85
80
± 5 mm initial error
±10mm initial error
±15mm initial error
75
70
65
0
50
100
150
200
Coincident lines per marker
250
Number of runs with different
number of Successful markers
Initial error range
(mm)
±5
± 10 ± 15
All 4 markers are successful 997
3 markers are successful
2 markers are successful
1 marker is successful
All 4 markers failed
985
777
3
15
144
0
0
75
0
0
4
0
0
0
Cardiac Beating
Shirato et al. 2004
Yes! A single point source
can be tracked with < 1 mm
accuracy
Park et al. 1993, Park et al. 2002, Sarah E. Palmer et al, 2006