Approximate Analytical/Numerical Solutions to the Groundwater
Download
Report
Transcript Approximate Analytical/Numerical Solutions to the Groundwater
Approximate Analytical Solutions to the
Groundwater Flow Problem
CWR 6536
Stochastic Subsurface Hydrology
3-D Steady Saturated
Groundwater Flow
Kf Kf Kf
0
x x y y z z
• K(x,y,z) random hydraulic conductivity field
• f (x,y,z) random hydraulic head field
• want approximate analytical solutions to the 1st and
2nd ensemble moments of the head field
System of Approximate Moment Eqns
to order e2
0 2f 0 ( x) F ( x) f 0 ( x)
0 x' 2 P ff1 ( x, x' ) x' F ( x' ) x' P ff1 ( x, x' ) x' P ff ( x, x' ) x'f 0 ( x' )
0 2 Pf1f1 ( x, x' ) F ( x) Pf1f1 ( x, x' ) P ff1 ( x, x' ) f 0 ( x)
• Use f0(x), as best estimate of f(x)
• Use sf2=Pff(x,x) as measure of uncertainty
• Use Pff(x,x’) and Pff(x,x’) for cokriging to
optimally estimate f or f based on field observations
Possible Solution Techniques
• Fourier Transform Methods (Gelhar et al.)
• Greens Function Methods (Dagan et al.)
• Numerical Techniques (McLaughlin and
Wood, James and Graham)
Fourier Transform Methods Require
• A solution that applies over an infinite domain
• Coefficients in equations that are constant, or can
be approximated as constants or simple functions
• Stationarity of the input and output covariance
functions (guaranteed for constant coefficients)
• All Gelhar solutions use a special form of Fourier
transform called the Fourier-Stieltjes transform.
Recall Properties of the Fourier
Transform
• In N-Dimensions (where N=1,3):
F (k )
1
ik
f
(
)
e
d
N
2
ik
f ( ) F (k )e
dk
• Important properties:
F (af ( x ) bg ( x ) aF (k ) bG (k )
S ff (k )
ik
P ( )e
d
N ff
2
1
n f
n
F n ik j F k
x j
Recall properties of the spectral
density function
• Spectral density function describes the distribution
of the variation in the process over all frequencies:
s f S ff (k )dk
2
• Eg
Look at equation for Pff(x,x’)
0 x ' 2 P ff1 ( x, x' ) x ' F ( x' ) x ' P ff1 ( x, x' ) x ' P ff ( x, x' ) x 'f 0 ( x' )
•
•
•
•
Are coefficients constant?
Can input statistics be assumed stationary?
If so output statistics will be stationary.
Assume x' F ( x' ) 0 ; substitute x x' ; x'
0 2 Pff1 ( ) Pff ( ) x 'f0
Solve equation for Pff(x,x’)
• Expand equation
2 P ff1 ( ) 2 P ff1 ( ) 2 P ff1 ( )
0
2
2
1
2
3 2
P ff ( ) f 0 P ff ( ) f 0 P ff ( ) f 0
1
1
2 2
3
3
• Take Fourier Transform
2
2
0 (ik1 ) S ff 1 (k ) (ik 2 ) S ff 1 (k ) (ik3 ) S ff1 (k )
2
0
0
0
(ik1 ) S ff (k )
(ik 2 ) S ff (k )
(ik3 ) S ff (k )
1
2
3
Solve equation for Pff(x,x’)
• Rearrange
0
0
0
iS ff (k ) k1
k2
k3
1
2
3
2
S ff1 (k )
k
df 0
• Align axes with mean flow direction and let J
d1
ik1 JS ff (k )
2
S ff1 (k )
k
Look at equation for Pff(x,x’)
0 2 Pf1f1 ( x, x' ) F ( x) Pf1f1 ( x, x' ) P ff1 ( x, x' ) f 0 ( x)
•
•
•
•
Are coefficients constant?
Can input statistics be assumed stationary?
If so output statistics will be stationary.
Assume F ( x) 0 ; substitute x x' ;
0 2 Pf1f1 ( ) P ff1 ( ) f 0
x
Solve equation for Pff(x,x’)
• Expand equation
0
2 Pf1f1 ( )
1
2
2 Pf1f1 ( )
2
2
2 Pf1f1 ( )
3 2
P ff1 ( ) f 0 P ff1 ( ) f 0 P ff1 ( ) f 0
1
1
2
2
3
3
• Take Fourier Transform
2
2
0 (ik1 ) S f1f1 (k ) (ik 2 ) S f1f1 (k ) (ik3 ) S f1f1 (k )
2
0
0
0
(ik1 ) S ff1 (k )
(ik 2 ) S ff1 (k )
(ik3 ) S ff1 (k )
1
2
3
Solve equation for Pff(x,x’)
• Rearrange
0
0
0
iS ff1 (k ) k1
k2
k3
1
2
3
2
Sf1f1 (k )
k
• Align axes with mean flow direction and let J
2 2
ik1 JS ff1 (k ) ik1 J ik1 JS ff (k ) k1 J S ff (k )
2
2
4
Sf1f1 (k )
2
k
k
k
k
df 0
d1
Procedure
• Given Pff() Fourier transform to get Sff(k)
e.g. P ff ( ) exp
3
S ff 2
2 2
1 k
• Use algebraic relationships to get Sff1(k) and Sf1f1(k)
ik1 J
3
S ff1 (k ) 2
2
2 2
k 1 k
k12 J 2
3
Sf1f1 (k ) 4
2
2 2
k 1 k
• Inverse Fourier transform to get Pff1() and Pf1f1()
• Then multiply each by e2=slnK2 to get Pff() and Pff()
Results
• Head Variance:
s h2
s ln k 2 J 2 2
3
• Head Covariance
2
cos
1
e
2
e
1
2 2 2
s ln K J
Pff ( , )
2
2
2
3 cos 2 1 1 e 2 e 1 4 8
2