Approximate Analytical/Numerical Solutions to the
Download
Report
Transcript Approximate Analytical/Numerical Solutions to the
Approximate Analytical/Numerical
Solutions to the Groundwater Flow
Problem
CWR 6536
Stochastic Subsurface Hydrology
3-D Saturated Groundwater Flow
Kf Kf Kf
0
x x y y z z
•
•
•
•
•
K(x,y,z) random hydraulic conductivity field
f (x,y,z) random hydraulic head field
No analytic solution exists to this problem
3-D Monte Carlo very CPU intensive
Look for approximate analytical/numerical
solutions to the 1st and 2nd ensemble moments of
the head field
First-order Perturbation Methods
• Bakr et al. Water Resources Research 14(2)
p. 263-271, April 1978
• Mizell et al. Water Resources Research
18(4) p. 1053-1067, August 1982
• Gelhar, Stochastic Subsurface Hydrology
Ch. 4 Sections 4.1-4.4
• McLaughlin and Wood Water Resources
Research 24(7) p. 1037-1060, July 1988
• James and Graham, Advances in Water
Resources, 22(7),711-728, 1999.
Re-write equation in terms of Ln K
K 2f
K f
2f K f
2f K f
0
K
K
x x
x 2
y 2 y y
z 2 z z
2f
1 K f 2f 1 K f 2f 1 K f
0
2 K x x
2 K y y
2 K z z
x
y
z
2f
ln K f 2f ln K f 2f ln K f
0
x x y 2
y y z 2
z z
x 2
0 2f ln K f
Small Perturbation Methods
• Expand input random variables into the sum of a
potentially spatially variable mean and a small
perturbation around this mean, i.e.
LnK ( x) F ( x) ef ( x)
F ( x) ELnK ( x)
E f ( x) 0 Var f ( x) 1 e lnK
• Assume solution of the output random variable
can be approximate as a converging power series
in the small parameter e.
f ( x) e ifi f0 ( x) ef1( x) e 2f2 ( x) ....
Small Perturbation Methods
• Insert expansion into governing equation
0 2 f0 ( x) ef1 ( x) e 2f2 ( x) ...
F ( x) ef ( x) f0 ( x) ef1 ( x) e 2f2 ( x) ...
• Collect terms of similar order
0 2f0 ( x) F ( x) f0 ( x)
0 e 2f1 ( x) F ( x) f1 ( x) f ( x) f0 ( x)
0 e 2 2f2 ( x) F ( x) f2 ( x) f ( x) f1 ( x)
Solve Mean Head Distribution
• Evaluate mean head distribution to order e2
Ef ( x) E e ifi Ef0 ( x) eEf1( x) e 2 Ef2 ( x) ....
• Solve equations for E[fi(x)]
0 2f0 ( x) F ( x) f0 ( x)
0 2 E f1 ( x) F ( x) E f1 ( x) E f ( x) f0 ( x)
0 2 E f 2 ( x) F ( x) E f 2 ( x) E f ( x) f1 ( x)
• Therefore to first order
E f ( x) f0 ( x)
Solve Head Covariance Function
• Evaluate head covariance to order e2
Pff ( x, x' ) E f ( x) E f ( x)f ( x' ) E f ( x' )
f0 ( x) ef1 ( x) e 2f2 ( x) ... f0 ( x)
E
2
f0 ( x' ) ef1 ( x' ) e f2 ( x' ) ... f0 ( x' )
ef1 ( x) e 2f2 ( x) ... ef1 ( x' ) e 2f2 ( x' ) ...
e 2 E f1 ( x)f1 ( x' ) ....
• Need to determine Ef1( x)f1( x' )
Solve for Head Covariance
• Post-Multiply equation for f1(x) by f1(x’):
0 2f1( x) F ( x) f1( x) f ( x) f0 ( x) f1( x' )
• Take f1(x’) inside derivatives with respect to x:
0 2f1( x)f1( x' ) F ( x) f1( x)f1( x' ) f ( x)f1( x' ) f0 ( x)
• Take expected values:
0 2 Ef1 ( x)f1 ( x' ) F ( x) Ef1 ( x)f1 ( x' ) E f ( x)f1 ( x' ) f0 ( x)
2 Pf1f1 ( x, x' ) F ( x) Pf1f1 ( x, x' ) Pff1 ( x, x' ) f0 ( x)
• Need Head-Log Conductivity Crosscovariance Pff1 ( x, x' )
Solve for Head-Log Conductivity
Cross-Covariance
• Pre-Multiply equation for f1(x’) by f(x):
0 f ( x) x' 2f1 ( x' ) x' F ( x' ) x'f1 ( x' ) x' f ( x' ) x'f0 ( x' )
• Take f(x) inside derivatives with respect to x’:
0 x' 2 f ( x)f1 ( x' ) x' F ( x' ) x' f ( x)f1 ( x' ) x' f ( x) f ( x' ) x'f0 ( x' )
• Take expected values:
0 x' 2 E f ( x)f1 ( x' ) x' F ( x' ) x' E f ( x)f1 ( x' ) x' E f ( x) f ( x' ) x'f0 ( x' )
x' 2 P ff1 ( x, x' ) x' F ( x' ) x' P ff1 ( x, x' ) x' P ff ( x, x' ) x'f0 ( x' )
• Need log-conductivity auto-covariance Pff ( x, x' )
System of Approximate Moment Eqns
0 2f 0 ( x) F ( x) f 0 ( x)
0 x' 2 P ff1 ( x, x' ) x' F ( x' ) x' P ff1 ( x, x' ) x' P ff ( x, x' ) x'f 0 ( x' )
0 2 Pf1f1 ( x, x' ) F ( x) Pf1f1 ( x, x' ) P ff1 ( x, x' ) f 0 ( x)
• Use f0(x), as best estimate of f(x)
• Use f2=Pff(x,x) as measure of uncertainty
• Use Pff(x,x’) and Pff(x,x’) for cokriging to
optimally estimate f or f based on field observations