Lie Generators
Download
Report
Transcript Lie Generators
Lie Generators
Lie Group Operation
Lie groups are continuous.
• Continuous coordinate
system
• Finite dimension
• Origin is identity
x ( ,, )
1
N
y ( 1 ,, N )
z ( 1 ,, N ) xy
f ( , )
The multiplication law is by
analytic functions.
• Two elements x, y
• Consider z = xy
There are N analytic
functions that define the
coordinates.
• Based on 2N coordinates
GL as Lie Group
The general linear groups
GL(n, R) are Lie groups.
Example
Let x, y GL(n, R).
• Represent transformations
• Dimension is n2
• Coordinates are matrix
elements minus db
b xb d b
All Lie groups are isomorphic
to subgroups of GL(n, R).
Find the coordinates of z=xy.
b zb d b x yb d b
b d b d b d b
b b b b
• Analytic in coordinates
Transformed Curves
(0)
de
e
• May define differentiable
curves
(e )
x ( 0) e
x(e ) G
All Lie groups have
coordinate systems.
The set x(e) may also form a
group.
• Subgroup g(e)
Single-axis Rotation
Parameterizations of
subgroups may take different
forms.
e
Example
Consider rotations about the
Euclidean x-axis.
• May use either angle or sine
g (e1 ) g (e 2 ) g (e1 e 2 )
e sin
g (e1) g (e 2 )
g (e1[1 e 2 ]1 2 e 2 [1 e1 ]1 2 )
2
2
The choice gives different
rules for multiplication.
One Parameter
A one-parameter subgroup
can always be written in a
standard form.
• Start with arbitrary
represenatation
• Differentiable function
• Assume that there is a
parameter
The differential equation will
have a solution.
• Invert to get parameter
g (e1 ) g (e 2 ) g (Se1 1 e 2 )
g (e1) g (e 2 ) g[ (e1, e 2 )]
(e ,0) (0, e ) e
e e (e )
e (0) 0
e (e1 e 2 ) (e (e1 ), e (e 2 ))
de de
de
de e 0 e 2
de
kf (e )
de
e 2 0
Transformation Generator
The standard form can be used
to find a parameter a
independent of e.
gg 1 e
dg 1
dg 1
g g
0
de
de
dg
dg 1
g
g
de
de
dg 1
g (e e ) g (e )
g
g lim
de
e
g (e ) g (e e ) g (e ) g (e )
lim
e
g (e ) g (0)
lim
g (0) a
e
dg
ag
de
Using standard form
g 1 (e ) g (e )
next
Solve the differential equation.
g (e ) eea
The matrix a is an infinitessimal
generator of g(e)