6._1DContinuousGroups
Download
Report
Transcript 6._1DContinuousGroups
6. One-Dimensional Continuous Groups
6.1
6.2
6.3
6.4
6.5
6.6
6.7
The Rotation Group SO(2)
The Generator of SO(2)
Irreducible Representations of SO(2)
Invariant Integration Measure, Orthonormality and
Completeness Relations
Multi-Valued Representations
Continuous Translational Group in One Dimension
Conjugate Basis Vectors
Introduction
• Lie Group, rough definition:
Infinite group that can be parametrized smoothly &
analytically.
• Exact definition:
A differentiable manifold that is also a group.
• Linear Lie groups = Classical Lie groups
= Matrix groups
E.g. O(n), SO(n), U(n), SU(n), E(n), SL(n), L, P, …
• Generators, Lie algebra
• Invariant measure
• Global structure / Topology
6.1.
The Rotation Group SO(2)
2-D Euclidean space
E2 span e1 , e2
Rotations about origin O by angle :
R e1 e1 cos e2 sin
R e2 e1 sin e2 cos
R ei e j R
R e
1
j
i
R e2 e1
cos
R
sin
cos
e2
sin
sin
cos
sin
cos
x E2
x ei x i
R : E2 E2
j
x R x R ei x i e j R i x i e j x j
x
by
x j R
j
i
xi
Rotation is length preserving:
x
2
x j xj R
j
x i R j xk x
k
i
R i R j i k
j
If O is orthogonal,
x i xi
R RT E
k
det R 1
2
i.e., R() is special orthogonal.
SO 2 R
O OT E OT O
det O det OT det O 1
2
O n All n n orthogonal matrices
det O 1
Theorem 6.1:
There is a 1–1 correspondence between rotations in En & SO(n) matrices.
Proof: see Problem 6.1
R 2 R 1 R 1 2 R 1 R 2
Geometrically:
R 2 n R
and
Theorem 6.2:
nZ
2-D Rotational Group R2 = SO(2)
R2 SO 2
is an Abelian group under matrix multiplication with
identity element
E R 0
and inverse
R1 R R 2
Proof: Straightforward.
SO(2) is a Lie group of 1 (continuous) parameter
SO(2) group manifold
6.2. The Generator of SO(2)
Lie group: elements connected to E can be acquired by a few generators.
For SO(2), there is only 1 generator J defined by
R d 0 E i d J
J is a 22 matrix
R() is continuous function of
R d
d R
R d
d
R R d R i d R J
d R
i R J
d
Theorem 6.3:
with
Generator J of SO(2)
R ei J
R 0 E
Comment:
• Structure of a Lie group ( the part that's connected to E ) is
determined by a set of generators.
• These generators are determined by the local structure near E.
• Properties of the portions of the group not connected to E are
determined by global topological properties.
cos d
R d
sin d
0 i
J
i
0
sin d
cos d
y
1
d
d
E i d J
1
Pauli matrix
J is traceless, Hermitian, & idempotent ( J2 = E )
R ei J
2 j
j 0 2 j !
j
E cos i J sin
2 j 1
E i
j 1 2 j 1 !
cos
sin
j 1
sin
cos
J
6.3. IRs of SO(2)
Let U() be the realization of R() on V.
U 2 U 1 U 1 2 U 1 U 2
U d E i d J
U() unitary
SO(2) Abelian
U 2 n U
U e i J
J Hermitian
All of its IRs are 1-D
The basis | of a minimal invariant subspace under SO(2) can
be chosen as
J
U 2 n U
so that
U e i
e i 2 n e i
IR Um :
J m m m
m = 0:
U 0 1
m Z
U m m m e i m
Identity representation
m = 1:
U 1 ei
SO(2) mapped clockwise onto unit circle in C plane
m = 1: U 1 e i
m = n: U n e
Theorem 6.4:
… counterclockwise …
i n
SO(2) mapped n times around unit circle in C plane
IRs of SO(2)
U m e i m
Single-valued IRs of SO(2) are given by
m Z
Only m = 1 are faithful
Representation
0 i
J
i
0
cos
R
sin
sin
is reducible
cos
has eigenvalues 1 with eigenvectors
J e e
R e e e
i
e
1
e1 i e2
2
R U 1 U 1
Problem 6.2
6.4. Invariant Integration Measure,
Orthonormality & Completeness Relations
Finite group g
Continuous group dg
Issue 1: Different parametrizations
Let G = { g() } & define
d
g
f g dφ f g φ
dφ d1
d n
where = ( 1, …n ) & f is any complex-valued function of g.
Changing parametrization to = (), we have,
ξ
d ξ f g ξ dφ φ f g φ
dφ f g φ
Remedy:
so that
Introduce weight :
ξ 1 ,
φ 1 ,
d g φ dφ
d ξ ξ f g ξ dφ φ f g φ
φ
ξ
ξ φ
φ
, n
,n
analytic ξ φ & f
( Notation changed ! )
Issue 2: Rearrangement Theorem
G
Since
d g f g d g f g g
G
M
d g f g
g 1M
g g ξ g G
d g f g g d gg f g g
M G
M
R.T. is satisfied by setting M = G if dg is (left) invariant, i.e.,
g G
d g d g g
Let
d g d g g
d g ξ g d ξ g
d g g ξ g g d ξ g g
g ξ g g g ξ g g ξ g
ξ g d ξ g ξ g g d ξ g g
0 d ξ e ξ g d ξ g
g e,
ξe 0
From
g ξ g g g ξ g g ξ g
ξ g g χ ξ g ; ξ g
ξ g χ 0 ; ξ g
d ξ g J ξ g d ξe
J ξ g
i
j
Proof:
g e
J ξ g det J ξ g
where
i
j
i ξ g ; ξ g
gj
g ξ g e 0
Theorem 6.5:
one can determine the (vector) function :
SO(2)
ξg 0
d ξe
0
e
d ξg
J ξ g
e(0) is arbitrary
d g d
R R R
;
1
J
0
;
Setting e(0) = 1 completes proof.
Theorem 6.6:
2
0
Orthonormality & Completeness Relations for SO(2)
d †
U n U m nm
2
n
U n U n†
Orthonormality
Completeness
Proof: These are just the Fourier theorem since
U n ei n
Comments:
• These relations are generalizations of the finite group results with
g dg
• Cf. results for Td ( roles of continuous & discrete labels reversed )
6.5. Multi-Valued Representations
R
Consider representation
U1/ 2 ei / 2
U1/ 2 2 ei / 2 U1/ 2
U1/ 2 4 e
i / 2
U1/ 2
2-valued representation
m-valued representations :
R
Un / m ei n / m
( if n,m has no common factor )
Comments:
• Multi-connected manifold multi-valued IRs:
• For SO(2): group manifold = circle Multi-connected because
paths of different winding numbers cannot be continuously deformed
into each other.
• Only single & double valued reps have physical correspondence in
3-D systems ( anyons can exist in 2-D systems ).
6.6. Continuous Translational Group in 1-D
R() ~ translation on unit circle by arc length
Similarity between reps of R(2) & Td
Let the translation by distance x be denoted by T(x)
Given a state | x0 localized at
x0,
T x x0 x0 x
T x T x x0 T x x0 x
T x x x0
T x T x T x x
T 0 x0 x0 0
x0 E x0
T xT x T x x
x0 x x
is localized at x0+x
T1 T x x R
T 0 E
x0
T 0 E
T x T x
1
is a 1-parameter Abelian Lie group
= Continuous Translational Group in 1-D
x0
T dx E i dx P
dT
T x dx T x dx
dx
T x T dx T x i dx P
Generator P:
dT x
i P T x
dx
T x ei P x
For a unitary representation T(x) Up(x), P is Hermitian with real
eigenvalue p. Basis of Up(x) is the eigenvector | p of P:
P p p p
U p x p p e i p x
pR
Comments:
1.
IRs of SO(2), Td & T1 are all exponentials: e–i m , e–i
knb
& e–i p x, resp.
Cause: same group multiplication rules.
2.
Group parameters are
continuous &
bounded for
discrete
& unbounded for
continuous & unbounded for
SO(2) = { R() }
Td
= { T(n) }
T1
= { T(x) }
Invariant measure for T1:
d g C dx
dx †
p
U
x
U
x p p
2 p
Orthonormality
dp p
†
U
x
U
p x x x
2
Completeness
C = (2)–1 is determined by comparison with the Fourier theorem.
SO(2)
Td
T1
Orthonormality
mn
(k–k)
(p–p)
Completeness
(–)
nn
(x–x)
6.7. Conjugate Basis Vectors
Reminder:
2 kind of basis vectors for Td.
•
|x
localized state
T n x x nb
•
|Ek
extended normal mode
T n E k E k e i k n b
uE , k x x
H Ek E Ek
Ek
For SO(2):
U 0 0
• | = localized state at ( r=const, )
U m m ei m
• | m = eigenstate of J & R()
U 0
m
m
m
m m U 0
Setting
m 0 1
U m
†
gives
0
m 0 ei m
m ei m
m
transfer matrix elements m | = representation function e–i m
m ei m
m ei m
m
2
0
2
d i m
e
m
2
m
0
d i mm
m m m
e
m
2
m
2 ways to expand an arbitrary state | :
m
m m
0
m m
2
2
0
d
2
m
m
ei m m
m
m
d
2
2
m
0
d i m
e
2
J
J m e i m
m
J is Hermitian:
J
m
1
i
m m ei m i
J J
1
i
in the x-representation
J = angular momentum component plane of rotation
1
i
For T1:
• | x = localized state at x
T x x0 x x0
• | p = eigenstate of P & T(x)
T x p p e i p x
p
x p T x 0
x
dp
2
d x ei p x x
x
x
p
p
dp
2
d p
p
2
dp
2
dx e
dx e
i p p x
x p e i p x
ipx
p x
p ei p x
d p
p p p p
p
x
T is unitary
p | 0 set to 1
p
ei p x
ei p x p 0
d p i p x x
e
x x
2
d x ei p p x 2 p p
2 ways to expand an arbitrary state | :
dx
dp
2
x
x
P+
dx
x x
dp
2
p p
dp
2
x
p
dx
p
x
x
x
1
i x
p
P Px
on V = span{ | x }
d p ipx
e p
2
d x e i p x x
dp
i p x
i
x
P p e
x
2
=P:
P
p p
p
p
P x
x x
1
i x
x
1
x
i x
P = linear momentum