THE MAV REVISION LECTURE 2010
Download
Report
Transcript THE MAV REVISION LECTURE 2010
THE MAV REVISION LECTURE 2011
Mathematical Methods CAS Units 3 and 4
Allason McNamara
Lecture Notes
MAV Revision Lecture Series 2011.doc
EXAMINATION 1
Structure of the paper
Short answer questions – 40 marks
Time limit: 60 minutes writing time
15 minutes reading time
Added Content to Exam 1
General solutions to trigonometric equations
Average value of a function
Functional Equations
Matrices – transformations, transition matrices and steady
state (Further Mathematics), solving simultaneous equations
(up to 5 unknowns)
(Compound and Double Angle formulae)
Sample VCAA Questions and Frequently
Asked Questions
Solutions to VCAA 2010 Sample Questions.doc
mmcasfaqs2011.pdf
EXAMINATION 2
Structure of the paper
Part I
22 multiple choice questions – 22 marks
Part II
Extended answer questions – 58 marks
Time limit:
120 minutes writing time
15 minutes reading time
General Advice
No calculator syntax
Always give exact answers unless the question asks for an
approximate answer.
Draw graphs properly: scale axes, give coordinates if asked
for……
For questions worth more than one mark show appropriate
working. On Exam 2, this is the rule you are using and the
answer.
For “show that” questions show all the steps.
Algebra
Don’t forget to put the multiplication
sign between a and x and the b and x
on the calculator.
ax bx
3
x ( ax b )
2
x( a x
E
b )( a x
b)
f ( x ) 2 x 3 x 7 x 11
4
3
x 1 0
x 1
f ( 1) 2 ( 1) 3 ( 1) 7 ( 1) 11
4
2 3 7 11
9 0
No f is not exactly divisible by x + 1.
3
There are 4 types of relations (Horizontal line: Vertical Line Test)
many:many
circle
1:many
inverse is a function
y x
many:1
parabola
function
1:1
line
function
inverse is a function
If they ask for f give the domain and rule.
If they ask for f(x) give the rule.
Be careful if the square root is in the denominator.
1
2x 3
,2 x 3 0
Solving Equations 2010 Exam 2
dT
dx
8000 cos( x ) sin( x )( 3 cos ( x ) 1)
2
3
1 2 cos
2
( x)
0
If the calculator does not give a solution, just solve the
numerator equal to zero.
8000 cos( x ) sin( x )( 3 cos ( x ) 1) 0
2
Using transformations
A
B
New to Exam 1 2010
x 4x 1
x
A
x ' 1
4
y 2 y 3
y ' 3
x ' 1
2
4
y
y ' 3
2
3
3
( x ' 1)
x ' 1
y ' 2
3
3
4
32
3
psandqs[1].doc
n: even over odd >1
n: odd over odd >1
psandqs[1].doc
n: odd over even less than 1
n: odd over odd less than one
a
b
D
c
e
5
x 2 5x
5 x 10
10
Don’t flick your graphs back – show asymptotic behaviour
Domain R\{b}
Range R\{c}
Give the equations of the asymptotes
Scale the axes properly
Domain R\{b}
Range y > c
D
-1
y
1
2 x
1
1
x2
x2 x3
1
x2
1
E
Check the a value.
A
New to Exam 1 2010
Note both curves go through the origin.
Solve the determinant equal to zero.
By-hand
a ( a 1) 3 2 0
a a60
2
( a 3 )( a 2 ) 0
B
B
D
By-hand
Solve 2 k 1 k 1
2k 1 k 1
y
2
|x – 3 x |
-1
1
2
3
4
x
2
x – 3x
x 3x 4 0
2
( x 4 )( x 1) 0
{ x : x 4} { x : x 1}
x 3x 4 0
2
No solution
g f ( x )
x4
x 1
2
3
y
g [ f( x ) ] = x – 1
6
5
4
3
(4, 3)
2
1
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
x
-1
-2
-3
-4
-5
-6
Domain is the same as the domain of f(x).
B
Which one is a many:1 function?
Asymptotes of f
x 2
y 1
Asymptotes of inverse
y 2
E
x 1
Swap x and y and solve for y on the calculator.
C
B
x 3e
f
1
2y
x
D om f
1
x 1
log e
2
3
1
1
: 1,
C
e
ax
2
5
2
ax log e
5
x
C
2
log e
a
5
1
x2
1
log e
log e
2
x 3
x
2
x3
2x
2
1
2x x 3 0
2
( 2 x 3 )( x 1) 0
2
x3
CHECK ANSWERS
x
3
2
or
x 1
D
Period
b
1
4
D
4
The amplitude is 2.
The graph has been translated 1 unit up.
The period is about 0.4. 2
5
0 .4
A
y 1 sin( 4 x ) 1
y 2 sin( x ) 1
Reflection in the x-axis
Dilation from the y-axis (reciprocal)
Change the domain.
0
4
,
4
0 , 2
2
E
2 x
3
2 x
, 2
3
3
x 2,
4
,
3
5
2
....
3
5
3
...
...
Period
6
2
3
x 2 or x 2 . 5
The first maximum, where x > 0, of f occurs at
x
P
4
3
4
The graph of f has been shifted one unit to the right to get the graph of g.
x
3
4
1
7
4
cos( x )(cos( x ) 2 ) 0
cos( x ) 0 as cos( x ) 2
A
New to Exam 1 2010
A
tan
4
3
tan tan
3
4
1 tan tan
3
4
3 1
1
3 1
3 1
3 1
3 1
3 1
42 3
2
3 1
3 1
2
3
New to Exam 1 2010
f ( u ) f ( v ) (1 e
1 e
u
v
)(1 e
e
u
v
)
u
e e
v
u
f (u ) f ( v ) 1 e e
f ( u ) f ( v ) (1 e
v
(u v )
f (u ) f ( v ) f (u v )
)
f ( x y ) ( x y ) x 2 xy y
2
2
f ( x) f ( y) x y
2
D
2
2
2x
f '( x)
1
x
2 log e ( 2 x )
4x
1 log e ( 2 x )
2x
E
2
2
g ( x ) 2 ( x a ) g ( x ) ( x a ) g ( x )
2
( x a )( 2 g ( x ) ( x a ) g ( x ))
E
C
Can get directly from some calculators.
dy
8 x 12 x
3
2
y 2x 4x
4
3
dx
m 64 48 16
32 32 0
(2, 0)
D
y y1 m ( x x1 )
y 16 ( x 2 )
at x = 2
f (3) f ( 0 )
30
C
25 1
3
26
3
Find the equation of the normal to the line.
y 2 x 10
Solve
x
2 x 10 for x .
2
( 0 , 0 ),
y
1
2
mN
x
1
2
x 4 and y 2 (4, 2)
d
4 2
2
2
2 5
y
-5
-4
-3
-2
-1
1
2
3
4
5
x
b=4
Solve
4 8a (2 4)
a
1
4
f ( x)
x
3
( x 4)
x
4
f (4)
256
4
x
3
4
64 0 (4, 0)
4
3
2
f ( x ) x 3 x
m f ( 4 ) 64 48 16
y t 16 ( x 4 ) 16 x 64
f ( 2 0 . 2 ) f ( 2 ) 0 . 2 f ( 2 )
D
Do 2010 Exam 1 last question.
Using the y coordinate of the tangent line to f(x)
to estimate the new f(x).
Write down the rule.
dx
dt
dx
dv
dx
dv
dv
dt
dx
8
dv
8
6 x
8
6 4
Put your units in.
2
3
cm/s
1
6x 2
3
3
( 2 x 1) 2
dx
3( 2 x 1)
3 2
1 2
3
2
dx
( 2 x 1)
3 ( 2 x 1)
1
2
c
1
2
c
B
sin(
1
2
D
2 x ) 24 x
3
dx
cos( 2 x ) 6 x c
4
What is wrong with my
calculator?
Put your calculator in
mode radians
3
2 f ( x ) dx
1
3
3 dx
1
2 5 3 x 1
3
10 ( 9 3 ) 4
A
cos( 3 x ) 3 x sin(
3 x sin(
3 x sin(
3 x ) dx x cos( 3 x ) c
3 x ) dx x cos( 3 x )
3 x ) dx x cos( 3 x )
cos( 3 x ) dx c
sin( 3 x )
3
c1
1
sin( 3 x )
x sin( 3 x ) dx 3 x cos( 3 x ) 3
A
D
dy
dx
log e ( 2 x )
2x
2x
1 log e ( 2 x )
e
e
2
log
e
( 2 x ) dx x log e ( 2 x ) x 12
1
2
2
e 1
1
e
log e ( e ) log e (1)
2 2
2
2
1
2
1
2
D
0
2
cos( x ) dx
0
f (0) 2
f ( x )
1
2
f ( 0 )
1
2
m N 2
x
e2
y 2 x 2
Top curve minus bottom curve
0 2 x 2
x 1
x
e 2 1 ( 2 x 2 ) dx
0
1
x
e 2 2 x 1) dx
0
1
0
2
2e 1 1 2e 0 0
1
1
x
2
2
2e x x
0
1
2e 2 2
f (1) f ( 2 ) f ( 3 )
2 9 28 39
D
D
Pr( X 2 )
7
30
D
10
30
4
30
21
30
7
10
E(X )
x . Pr( X
x)
3
6
0
1
30
66
30
B
30
11
5
2
7
30
3
10
30
4
4
30
0 .3
0 .7
2
0 . 6 1 0 . 51
0 . 4 0 049
Answer 0.49
OR
1 0 .3 0 .7 1 0 .7 0 .4
0 .9
0 .1
4
0 . 6 350 597 . 975
0 . 4 350 102 . 025
598 Tea
102 coffee
New to Exam 1 2010
0 .9
0 .1
0 .6
x
0 . 4 700
600 Tea
100 coffee
OR
0 .1
0 .1 0 .6
700 100
x
x 700
x
7
10
D
6
9
5
8
7
24
1
X ~ Bi (10 , )
2
C
Pr( X 8 ) 0 . 0547
E ( X ) np 1 . 2
Var ( X ) npq 0 . 72
1 . 2 q 0 . 72
E
q 0 .6
p 0 .4
n 3
1
1
sin(
x
)
dx
2
4
a
Solve
a = 2.09
E
for a.
3
x
12 dx
1
3
x2
24
1
9
24
1
3
1
24
5
x
12
a
5
dx
8
5
x
5
8
24 a
2
25
24
a
a
24
2
24
a
2
2
5
8
5
12
10
a
10
D
2
X ~ N ( 4 . 7 , 1.2 )
Z ~ N ( 0 , 1)
3.5 4.7
Pr( X 3 . 5 ) Pr( Z 1) Pr( Z 1)
B
2
X ~ N ( 72 , 8 )
Pr( X 80 ) Pr( Z 1) 0 . 16
72 80
Pr( 64 X 72 ) Pr( 1 Z 0 ) Pr( 0 Z 1) 0 . 84 0 . 5 0 . 34
64 72
Pr( X 64 \ X 72 )
Pr( X 64 ) Pr( X 72 )
Pr( X 72 )
0 . 16
0 .5
8
25
64 72
X ~ N ( 200 , 100)
Pr( X 208 ) 0 . 7881
D
200 208
2
X ~ N (130 , 2.7 )
Pr( X a ) 0 . 35
a 129
D
130