Complex numbers Summary PPTX
Download
Report
Transcript Complex numbers Summary PPTX
Complex numbers
•Definitions
•Conversions
•Arithmetic
•Hyperbolic Functions
Define the imaginary number
i 1
so that
i 2 1,
If z x iy
then x is the real part of z
and y is the imaginary part
i 3 i i 2 i
i 4 i 2i 2 1 1 1
Im z
Argand diagram
x iy
y
r
x
Main page
Re z
Complex numbers:
Definitions
If z x iy then
the conjugate of z ,
written z or z *
is x iy
If the complex number z x iy then
the Modulus of z is written as z and
the Argument of z is written as Arg (z )
so that
z x 2 y 2 r , Arg ( z ) tan 1 ( y / x)
r , are shown in the Argand diagram
Cartesian form
(Real/Imaginary form)
z x iy
Polar form
Complex numbers:
Forms
If is the principal
argument of a complex
number z then
Re z
Main page
Re z
Polar to Cartesian form
x r cos
y r sin
Cartesian to Polar form
Eulers formula
cos i sin ei
Im z
r
x
Principal argument
x iy
y
(Modulus/Argument form)
z r (cos i sin )
r cis
Im z
Exponential form
z re i
r
x2 y2
tan 1 ( y / x)
NB. You may need to add or
1
subtract
to tan ( y / x)
in order that gives z in the
correct quadrant
Let z a ib
and w c id
Multiplication
z w (a ib )(c id )
(ac bd ) i (ad bc)
Addition/ subtraction
z w (a c) i (b d )
Equivalence
Complex numbers:
Arithmetic
z w a c and b d
De Moivres theorem
Division
(cos i sin ) n cos n i sin n
z z w z w (a ib )(c id )
w w w w 2
c2 d 2
Polar/ exponential form:
Powers/ roots
ac bd bc ad
2
i 2
2
2
c d c d
If z
then
r n ei ( n )
Polar/ exponential form: Mult/division
If z
then
r cis re i
and
w s cis se i
z w rs cis( ) rse
and z
r
r
cis( ) e i( )
w s
s
r cis re i
z n r n cis (n )
and
n
n
z n r cis
n
i( )
re
n
i
Main page
Hyperbolic Sine & Cosine Functions
cosh x
1 x
1 x
e e x and sinh x
e e x
2
2
Other Hyperbolic Functions
sinh x
tanh x
,
cosh x
1
cosechx
,
sinh x
1
sechx
cosh x
cosh x
1
coth x
sinh x
tanh x
Equivalences
Main page
cos i sin ei
cos i cosh and
sin i i sinh
cosh i cos and
sinh i i sin
Complex
numbers:
Hyperbolic
Functions
Sine & Cosine Functions
in Exponential form
1 i
e e i and
2
1 i
sin
e e i
2i
cos
Eulers formula
Complex numbers
That’s all folks!
Main page