mult Divide monomials
Download
Report
Transcript mult Divide monomials
Objective 1: To multiply monomials.
Objective 2: To divide monomials and
simplify expressions with
negative exponents.
To multiply monomials
Exponent Review
5
2
Base
Exponent
What does it mean?
5
2
22222
It means to use 2 as a factor 5 times.
What does it mean?
5
2
22222
4222
8 2 2
16 2
32
2 32
5
Exponent Review
Exponent
(4)
Base
3
What does it mean?
(4) (4)(4)(4)
3
16(4)
64
What does it mean?
(4) 64
3
Multiplying with exponents
When you multiply, add the exponents.
5
x x x
8
y y y
5
3
4
1
Example 1
(4 x y )(3x y )
5
3
1
2
What’s the exponent for this x?
Example 1
(4 x y )(3x y )
5
3
1
2
Multiply the coefficients first.
Example 1
(4 x y )(3x y )
5
3
1
12x y
6
5
2
Example 1
(4 x y )(3x y )
5
3
1
12x y
6
5
2
Example 2
2
3
3
5
(5x y )(2 x y )
5
10x y
8
Example 2
2
3
3
5
(5x y )(2 x y )
5
10x y
8
Raising a power to a power
When raising a power to another power,
multiply the exponents.
(a ) a
6
(x ) x
20
2 3
4 5
Raising a power to a power
When raising a power to another power,
multiply the exponents.
(x y ) x y
3
4 2
6
8
Take everything in parentheses and raise it to the 2nd power.
Raising a power to a power
When raising a power to another power,
multiply the exponents.
(x
n2 5
) x
5( n 2)
x
Use Distributive Property.
5 n 10
Example 3
3 4 3
(2a b )
3
9 12
2 ab
Simplify the coefficient.
Example 3
3 4 3
(2a b )
2 2 2 8
3
9 12
2 ab
9 12
8a b
Example 4
(2 x y )( 3x y )
1
2
1
4 3
What’s the exponent forWhat’s
this x? the exponent for this x?
Example 4
(2 x y )( 3x y )
1
2
1
4 3
Simplify this expression first
because it has an outside exponent.
Take everything in parentheses and
raise it to the 3rd power.
Example 4
(2 x y )( 3x y )
1 2
3 12
(2 x y )(27 x y )
1
2
1
4 3
(3)(3)(3) 27
Now, there are no outside exponents.
We can multiply the coefficients
Then multiply the x’s
Then multiply the y’s
Example 4
(2 x y )( 3x y )
1 2
3 12
(2 x y )(27 x y )
1
2
1
54x y
4
14
4 3
Example 4
(2 x y )( 3x y )
1 2
3 12
(2 x y )(27 x y )
1
2
1
54x y
4
14
4 3
Example 5 (skip)
2 2 3
[(2 xy ) ]
Start outside the brackets
Multiply the two outside
exponents.
Example 5
2 2 3
[(2 xy ) ]
2 6
(2 xy )
Simplify the outside exponent.
Raise everything inside the
parentheses to the 6th power.
Example 5
2 2 3
[(2 xy ) ]
2 6
(2 xy )
6
6 12
2 x y
6 12
64x y
To divide monomials and simplify negative
exponents.
Dividing with exponents
When you divide, subtract the exponents.
5
2
2
2
4
3
2
10
x
2
x
8
x
Example 6
5 9
ab
4 1
ab
What’s the exponent for this b?
Example 6
5 9
ab
4 1
ab
1 8
ab
ab
8
Example 7
x
2
x
3
2
Raise everything in the parentheses
to the 2nd power.
Example 7
x
2
x
6
x
4
x
3
2
Subtract the exponents.
Example 7
x
2
x
6
x
4
x
3
x
2
2
Example 8
y
4
2
3
Raise everything in the parentheses
to the 3rd power.
Example 8
y
4
6
y
3
4
2
3
Simplify the denominator.
4 4 4 64
Example 8
y
4
6
y
3
4
6
y
64
2
3
Look At This
4
x
0
x
4
x
1
1
1
1
1
1
1
1
x
xxxx
1
4
x
xxxx
4
Look At This
4
x
0
x
4
x
x
xxxx
1
4
x
xxxx
4
Look At This
x 1
0
This is another rule.
Zero as exponent
Anything raised to zero power equals 1.
y 1
0
9 1
0
(7 x y ) (1) 1
4
3 0
Review: Whole Numbers
Any whole number can be placed on top of 1.
4
4
1
Review: Whole Numbers
Any whole number can be placed on top of 1.
7
7
1
Review: Whole Numbers
Any whole number can be placed on top of 1.
15
15
1
Review: Whole Numbers
Any whole number can be placed on top of 1.
x
x
1
Review: Whole Numbers
Any whole number can be placed on top of 1.
y
y
1
Review: Whole Numbers
Any whole number can be placed on top of 1.
5x
5x
1
Fractions
There are 2 parts of a fraction.
top
bottom
Negative Exponents
When you see negative exponents, think
MOVE & CHANGE
Move the base from top to bottom or bottom
to top.
Change the exponent to a positive number.
Negative Exponents
4
9
x
y
9
4
y
x
MOVE & CHANGE
Negative Exponents
4
9
x
y
9
4
y
x
MOVE & CHANGE
Negative Exponents
3
x
1
2
3 2
y
x y
y does not
Nothing
have is
negative
left on top.
exponent.
MOVE & CHANGE
We knowItthere
staysiswhere
an invisible
it is. 1 there.
Negative Exponents
3
x
1
2
3 2
y
x y
Negative Exponents
4
2
1
1
2
4
1
2
16
4
MOVE & CHANGE
Negative Exponents
4
2
1
1
2
4
1
2
16
4
MOVE & CHANGE
Negative Exponents
3
x
1
x
3
1
x
3
MOVE & CHANGE
Negative Exponents
3
x
1
x
3
1
x
3
MOVE & CHANGE
Example 9
a
3
b
2
2
Raise everything in the parentheses
to the negative 2nd power.
Example 9
a
3
b
4
a
6
b
2
2
Move the negative exponents and
change to positive exponents.
Example 9
a
3
b
4
a
6
b
6
b
4
a
2
2
Example 10
7d
5
Example 10
7d
5
5
7d
1
7
5
1d
7
5
d
Example 11
2
4
5a
Move any negative exponents and
change to positive.
Example 11
2
4
5a
4
2a
5
Example 11
2
4
5a
4
2a
5
Example 12 (skip)
4
x
9
x
Subtract the exponents.
4 9 5
Example 12
4
x
9
x
x
5
Put under 1 and change exponent to
positive.
Example 12
4
x
9
x
x
5
1
5
x
The variable
stays where
the bigger
exponent
was.
IMPORTANT!
Your final answer can NOT have any negative
exponents.
Remember to move all negative exponents
and change them to positives.
All Rules in Symbolic Form
x x x
m
n
mn
m
x
mn
x
n
x
0
x 1
x
n
1
n
x
m n
(x ) x
mn
p
mp
x x
n np
y
y
m
x y
m
n
p
x y
mp
np
Example 13
4
3 7
(3ab )(2a b )
2 3
6a b
1 (3) 2
4 7 3
Example 13
4
3 7
(3ab )(2a b )
2 3
6a b
Move negative exponents and
change to positive.
Example 13
4
3 7
(3ab )(2a b )
2 3
6a b
6b
2
a
3
Example 13
4
3 7
(3ab )(2a b )
2 3
6a b
6b
2
a
3
Example 14
2 5
4a b
5 2
6a b
7 3
2a b
3
2 5 7
52 3
Example 14
2 5
4a b
5 2
6a b
7 3
2a b
3
Move negative exponents and
change to positive.
Example 14
2 5
4a b
5 2
6a b
7 3
2a b
3
3
2b
7
3a
Example 14
2 5
4a b
5 2
6a b
7 3
2a b
3
3
2b
7
3a