Trigonometric Form of a Complex Number
Download
Report
Transcript Trigonometric Form of a Complex Number
Trigonometric Form of a Complex
Number
Complex Numbers
Recall that a complex
number has a real component
and an imaginary component.
bi
z = 3 – 2i
The absolute value of a complex
number is its distance from the
origin.
z a b
Imaginary
axis
a
z = a + bi
2
Argand Diagram
Real
axis
z = 3 – 2i
The names and letters are changing, but this
sure looks familiar.
2
z 32 2 9 4 13
2
The Trig form of a Complex Number
x a
r r
y b
sin
r r
cos
The trig form of the complex number z a bi
is z (r cos ri sin ) r cos i sin .
r is called the modulus and is the distance from
the origin to the point. r a 2 b2
is called the argument and is the angle
formed with the x-axis.
b
tan 1
a
r a2 b2
b r sin
a r cos
How is it Different?
In a rectangular system, you go
left or right and up or down.
z 2 2i
In a trigonometric or polar system, you
have a direction to travel and a distance
to travel in that direction.
z 2 cos 45 i sin 45
Polar form (2,45)
Converting from Rectangular form to
Trig form
1. Find r. r a 2 b2
b
2. Find . tan
a
3. Fill in the blanks in z r cos i sin
1
1. Find r
r 42 32 16 9
r 25 5
2. Find
tan 1
3
36.9
4
Convert z = 4 + 3i to trig form.
3. Fill in the blanks
z 5 cos 36.9 i sin 36.9
Polar form 5,36.9
Converting from Trig Form to
Rectangular Form
This one’s easy.
1.
Evaluate the sin and cos.
2.
Distribute in r
1. Evaluate the sin and cos
2. Distribute the 4.
Convert 4(cos 30 + i sin 30) to
rectangular form.
3
1
4
i
2
2
2 3 2i
Multiplying Complex Numbers
To multiply complex numbers in
rectangular form, you would FOIL
and convert i2 into –1.
To multiply complex numbers in trig
form, you simply multiply the rs and
add the thetas.
a bi c di
r1 cos 1 i sin 1 r2 cos 2 i sin 2
r1r2 cos 1 2 i sin 1 2
ac adi bci dbi 2
ac adi bci db
ac db ad bc i
The formulas are scarier than it really is.
multiply z1z2
Example
Rectangular form
z1 z2
2
3 2i 3 2 3 2i
Where z1 2 3 2i 4 cos30 i sin 30
z2 3 2 3 2i 6 cos 45 i sin 45
Trig form
z1 z2
6 6 6 6i 6 2i 6 2i 2
4 cos 30 i sin 30 6 cos 45 i sin 45
4 6 cos 30 45 i sin 30 45
6 6 6 6i 6 2i 6 2
24 cos 75 i sin 75
6
r
6 6 2 6 6 6 2 i
6
6 6 2
6
2
6 6 2
2
r 216 72 12 72 216 72 12 72
r 576 24
6 6 6 2
75
6 6 6 2
tan 1
Dividing Complex Numbers
In rectangular form, you rationalize
using the complex conjugate.
a bi
c di
a bi c di
c di c di
ac adi bci bdi 2
c 2 d 2i 2
ac adi bci bd
c2 d 2
ac bd bc ad
2
i
2
2
2
c d
c d
In trig form, you just divide the rs and
subtract the theta.
r1 cos 1 i sin 1
r2 cos 2 i sin 2
r1
cos 1 2 i sin 1 2
r2
divide
Where z1 3 2 3 2i 6 cos 45 i sin 45
Example
z2 2 3 2i 4 cos 30 i sin 30
Rectangular form
Trig form
3 2 3 2i
2 3 2i
6 cos 45 i sin 45
4 cos 30 i sin 30
3 2 3 2i 2 3 2i
2
3
2
i
2
3
2
i
6 6 6 2i 6 6i 6 2i 2
12 4i 2
6 6 6 2i 6 6i 6 2
12 4
6
6 6 2
16
6
6
cos 45 30 i sin 45 30
4
3
cos15 i sin15
2
6 6 2 i
16
z1
z2
6 6 6 2
1
16
15
tan
6 6 6 2
216 72 12 72 216 72 12 72
16
r
2
6 6 6 2 6 6 6 2
r
16
16
256
r
576
9 3
256
4 2
2
De Moivre’s Theorem
If z r (cos i sin ) is a complex
number
And n is a positive integer
n
n
Then z r (cos i sin )
r (cos n i sin n )
n
Who was De Moivre?
A brilliant French mathematician who
was persecuted in France because of
his religious beliefs. De Moivre moved to
England where he tutored mathematics
privately and became friends with Sir
Issac Newton.
De Moivre made a breakthrough in the field of probability
(writing the Doctrine of Chance), but more importantly he
moved trigonometry into the field of analysis through
complex numbers with De Moivre’s theorem.
But, can we prove DeMoivre’s Theorem?
Let’s look at some Powers of z.
z r(cos i sin )
z r (cos i sin )
2
2
r 2 (cos i sin )2
r 2 (cos i sin )(cos i sin )
r 2 (cos2 2i cos sin i 2 sin2 )
r 2 (cos2 sin2 2i cos sin )
r (cos2 i sin 2 )
2
Let’s look at some more Powers of z.
z r (cos i sin )
3
3
r(cos i sin )r 2 (cos i sin )2
r (cos3 i sin 3 )
3
z r (cos i sin )
4
4
r(cos i sin )r3 (cos i sin )3
r 4 (cos4 i sin 4 )
It appears that:
cos i sin cosn i sinn
n
Proof:
n=1, then the statement is true.
Assume
We can continue in the previous manor up to some arbitrary k
cos i sin cosk i sink
cos i sin
k
Let n = k, so that:
Now find
k1
cos i sin cosk i sinkcos i sin
cos
i sin cosk cos sink sin icosk sin sink cos
k1
k1
cos i sin
cos i sin
k1
cos(k ) i sin(k )
k1
cos(k 1) i sin(k 1)
Euler’s Formula e cos i sin
i
We can also use Euler’s formula to prove DeMoivre’s Theorem.
cos i sin
n
e
=e
i n
in
= cos n i sin n
So what is the use?
Find an identity for cos5 using Mr. De Moivre’s fantastic theory
cos5 i sin5 cos i sin
5
Remember the binomial expansion:
(a b)5 1(a)5 (b)0 5(a)4 (b)1 10(a)3 (b)2 10(a)2 (b)3 5(a)1(b)4 1(a)0 (b)5
Apply it:
cos5 i sin 5 (1)(cos5 ) (5)(cos4 )(i sin ) (10)(cos3 )(i 2 sin 2 ) (10)(cos2 )(i 3 sin 3 )
(5)(cos)(i4 sin4 ) (1)(i5 sin5 )
Cancel out the imaginery numbers:
cos5 cos5 10cos3 sin2 5 cos sin4
Now try these:
cos3
cos 3cos sin
sin3
3cos sin sin
3
2
2
3
sin4
4 cos sin 4 cos sin
3
3
Powers of Complex Numbers
This is horrible in rectangular
form.
a bi
a bi a bi a bi ... a bi
n
The best way to expand one
of these is using Pascal’s
triangle and binomial
expansion.
You’d need to use an i-chart
to simplify.
It’s much nicer in trig form. You just
raise the r to the power and multiply
theta by the exponent.
z r cos i sin
z n r n cos n i sin n
Example
z 5 cos 20 i sin 20
z 3 53 cos3 20 i sin 3 20
z 3 125 cos60 i sin 60
Roots of Complex Numbers
There will be as many answers as the
index of the root you are looking for
Square root = 2 answers
Cube root = 3 answers, etc.
Answers will be spaced symmetrically
around the circle
You divide a full circle by the number of
answers to find out how far apart they are
The formula
z r cos i sin
n
Using DeMoivre’s Theorem we get
360k
360k
z n r cos
i sin
or
n
n
k starts at 0 and goes up to n-1
This is easier than it looks.
n
2 k
2 k
r cos
i sin
n
n
General Process
1.
2.
3.
4.
Problem must be in trig form
Take the nth root of r. All answers
have the same value for r.
Divide theta by n to find the first
angle.
Divide a full circle by n to find out how
much you add to theta to get to each
subsequent answer.
Example
Find the 4th root of z 81cos80 i sin80
1. Find the 4th root of 81
r 4 81 3
2. Divide theta by 4 to get the
first angle.
3. Divide a full circle (360) by
4 to find out how far apart the
answers are.
360
90 between answers
4
4.
List the 4 answers.
•
•
80
20
4
z1 3 cos 20 i sin 20
The only thing that changes z2 3 cos 20 90 i sin 20 90 3 cos110 i sin110
is the angle.
z3 3 cos 110 90 i sin 110 90 3 cos 200 i sin 200
The number of answers
z 3 cos 200 90 i sin 200 90 3 cos 290 i sin 290
equals the number of roots. 4