Transcript Chapter 1

Chapter
3
Whole Numbers and
Their Operations
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
3-2 Algorithms for Whole-Number
Addition and Subtraction




Addition Algorithms
Subtraction Algorithms
Equal-Addends Algorithm
Understanding Addition and
Subtraction in Bases Other Than
Ten
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Fluency with Multidigit Addition and
Subtraction
Children use their understanding of addition to
develop quick recall of basic addition facts and
related subtraction facts.
They solve arithmetic problems by applying their
understanding of models of addition and subtraction
(such as combining or separating sets or using
number lines), relationships and properties of
number (such as place value), and properties of
addition (commutativity and associativity).
NCTM Curriculum Focal Points, p. 14
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Fluency with Multidigit Addition
and Subtraction (continued)
Children develop, discuss, and use efficient,
accurate, and generalizable methods to add and
subtract multidigit whole numbers.
They select and apply appropriate methods to
estimate sums and differences or calculate them
mentally, depending on the context and numbers
involved.
NCTM Curriculum Focal Points, p. 14
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Fluency with Multidigit Addition
and Subtraction (continued)
They develop fluency with efficient procedures,
including standard algorithms, for adding and
subtracting whole numbers, understand why the
procedures work (on the basis of place value and
properties of operations), and use them to solve
problems.
NCTM Curriculum Focal Points, p. 14
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Concrete model
14
+ 23
37
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Expanded algorithm
14
+23
7
+30
37
Standard algorithm
(Add ones)
(Add tens)
14
+23
37
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Expanded algorithm with regrouping
37
+28
15
+50
65
(Add ones)
(Add tens)
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Standard algorithm with regrouping
1
37
+28
65
(Add ones, regroup,
and add the tens)
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Add two three-digit numbers with two regroupings.
186 + 127
Add the ones
and regroup.
6 ones + 7 ones = 13 ones
13 ones = 1 ten + 3 ones
1
186
+ 127
3
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Add two three-digit numbers with two regroupings.
186 + 127
Add the tens
and regroup.
1 ten + 8 tens +
2 tens = 11 tens
11 tens = 1 hundred + 1 ten
11
186
+ 127
13
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
(continued)
Addition Algorithms
Add two three-digit numbers with two regroupings.
(continued)
186 + 127
Add the hundreds.
1 hundred + 1 hundred +
1 hundred = 3 hundreds
11
186
+ 127
313
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Left-to-Right Algorithm for Addition
568
+ 757
(500 + 700) → 1200
(60 + 50) →
110
(8 + 7) →
15
1325
→
568
+ 757
1215
32
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
→ 1325
Addition Algorithms
Lattice Algorithm for Addition
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Scratch Algorithm for Addition
87
65 2
+ 49
Add the numbers in the units place
starting at the top. When the sum is 10 or
more, record this sum by scratching a
line through the last digit added and
writing the number of units next to the
scratched digit.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Scratch Algorithm for Addition (continued)
87
65 2
+ 49 1
Continue adding the units, including any
new digits written down. When the
addition again results in a sum of 10 or
more, repeat the process.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Scratch Algorithm for Addition (continued)
2
87
65 2
+ 49 1
1
When the first column of additions is
completed, write the number of units, 1,
below the addition line in the proper
place value position. Count the number
of scratches, 2, and add this number to
the second column.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Addition Algorithms
Scratch Algorithm for Addition (continued)
2
80 7
6 52
+ 40 9 1
2 0 1
Repeat the procedure for each
successive column until the last column
with non-zero values. At this stage, sum
the scratches and place the number to
the left of the current value.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Subtraction Algorithms
Concrete model
243
− 61
Represent 243 with 2 flats, 4 longs, and 3 units, as
shown. To subtract 61 from 243, we try to remove
6 longs and 1 unit from the blocks shown in the
figure. We can remove 1 unit, but to remove 6
longs, we have to trade 1 flat for 10 longs.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Subtraction Algorithms
Concrete model (continued)
Now we can remove, or “take away,” 6 longs and 1
unit, leaving 1 flat, 8 longs, and 2 units, or 182.
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Subtraction Algorithms
Concrete model (continued)
243
− 61
182
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Equal-Addends Algorithm
The equal-additions algorithm for subtraction is
based on the fact that the difference between two
numbers does not change if we add the same
amount to both numbers.
255
255 + 7
262
262 + 30
292
→
→
→
→
− 163
− 163 + 7
− 170
− (170 + 30) − 200
92
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Understanding Addition and Subtraction
in Bases Other Than Ten
343five + 2five = 400five
222five – 43five = 124five
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Understanding Addition and Subtraction
in Bases Other Than Ten
Concrete model
12five
+ 31five
43five
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Understanding Addition and
Subtraction in Bases Other Than Ten
Expanded algorithm
12five
+ 31five
3
+ 40
43five
Standard algorithm
12five
+ 31five
43five
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Understanding Addition and Subtraction
in Bases Other Than Ten
Fives
3
− 1
Ones
2
4
→
Fives
2
− 1
1
Ones
12
4
3
Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
21
32five
− 14five
13five