Transcript Document
Using Matlab
-seminar 1 for digital signal
processing
Matlab as calculator
1. basic arithmetic operator + - * / ^ ()
e.g. 2+3/4*5 =
3^2*4 =
3-4/4-2 =
2 extended arithmetic - accidental error
1/0 =
-1/0 =
0/0 =
Numbers and formats
1. Different kind of numbers
Integer: e.g. 123, -218
Real : e.g. 1.234, - 10.9
complex : e.g. 3.21-3.4*i (i = sqrt(-1)).
Inf : Infinity (dividing by 0)
NaN: Not a number (0/0)
e: notation for very large or small
number, e.g. -1.34e+03 = ? , 1.34e-05 = ?
Numbers and formats
2. Calculation: 15 significant figures
The 'format' tells how matlab prints
numbers. Type 'help format' in command
window for full list
e.g. pi = ?? usually 3.1416
format long
pi = ??
format short e
pi = ??
format short
pi = ??
If want to switch back to default format, type: format
Numbers and formats
3. finite accuracy consequences
Matlab limit accuracy (enough for most
cases): 64 bits, store number as large as
2*10^308, as small as 2*10^(-308)
Store any number 15 significant figures:
e.g. 1.23456789023456 (14 figures, can handle)
1.23456789023456789012 (20 digits, truncated to
15 figures)
round off cannnot be avoid.
e.g. what is sin (pi) = ?
try sin(pi) = ??-slight round-off error, take it as zero
as long as small like 10^(-15).
Variables
1. combination of letter and number, case
sensitive
e.g. a , x1, z2453, A, t = 2+3-9, 2*t-2
Not allowed: Net-c, 2p, %x, @sign
2. special names: eps (= 2^(-54)), pi -->
avoid using
3. complex numbers : i, j = sqrt(-1), unless
you change them
Suppressing output (don't want
to show output)
• hidden: x = -13; (semi-colon).
Build-in function
1. sin, cos, tan, sec = 1/sin, cosec = 1/cos,
cotan
e.g. work out the coordinate of a point on a circle of radius 5
centred at origin, having an elevation 30 degree = pi/6 radians.
2. inverse trig function
e.g. asin, acos, atan--> answer returned in radians, so asin(1) = pi/2
3. exponential
exp : exp(x) = e^x
logarithm: log: log to base e/ log10 to base 10
square root: sqrt().
e.g. x = 9; sqrt(x), exp(x), log(sqrt(x)), log10(x^2+6)
vectors
1. row vectors
a = [1 2 3] or a = [1, 2, 3]
e.g. V = [1 3 sqrt(5)], what is length(V)
- space vitally important : e.g. v2 = [3+ 4 5], v3 = [3 +4 5];
- add vector of the same length: e.g. V + v3, v4 = 3*v3, v5
= 2*V-3*v4, v6 = v+v2??? wrong! since dimension must
agree
- build a row vector from existing ones: e.g. w = [1 2 3], z
= [8, 9], cd = [2*z -w], sort(cd) (ascending order)
- look at value of particular entries: e.g. w(2) = ?
- set w(3) = 100, then w = ??
Vectors
2. column vector
e.g. c = [1; 3; sqrt(5)] or c2 = [3 return 4 return 5]
c3 = 2*c-5*c2
3. column notation : a shortcut for producing
row vectors
e.g. 1:100
3:7
5:0.1:6
1:-1 --> []
0.32:0.1:0.6
-0.4:-0.3:-2
vector operation
1. scalar product: u*v = sum (ui*vi)
u = [u1, ..., un]; v = [v1;...; vn]
e.g. u = [10 -11 12], v = [20; -21; -22];
prod = u*v
e.g. w = [2 1 3]; z = [7; 6; 5]; check:
v*w, u*w', u*u', v'*z
- norm of a vector: ||u|| = sqrt(sum(ui))
compute norm: sqrt(u*u') or norm(u)
vector operation
2. dot product-vector of the same length
times with each other
u.v = [u1v1,...,unvn]
e.g. u.*w, u.*v', u.*z, u'.*v
ex.: Tabulate y = x*sin(pi*x) for x = 0,
0.25, ... , 1
ans: x = 0:.25:1; y = x.*sin(pi*x);
Vector operations
3. dot divison of array-element by element
division
e.g. a = 1:5, b = 6:10, check a./b = , a./a = , c = -2:2,
a./c, a.*b-24, ans./c
- ex: limit sin(pi*x)/x, as x-->0
ans: x = [.1 .01. .001 .0001], sin(pi*x)./x, format
long , ans - pi
e.g. 1/x (wrong!), 1./x (correct)
4. dot power of array (.^) sqare all element
of a vector
e.g. u.*u, u.^2, u.^4, u.*w.^(-2)
Entering matrices
Defining a matrix in ML is simple: just list its entries
between [ ]. Use semicolons to separate rows.
A= [1 2 3; 4 5 6; 7 8 9]
A=
1
4
7
2
5
8
3
6
9
Addressing matrix elements
A= [1 2 3; 4 5 6; 7 8 9],
A(2, 3)
a single matrix element
A(2:3, 1:2)
a portion of the matrix
ans =
4 5
7 8
Manipulating matrices - 1
You can sum matrices of same size
A= [1 2; 4 5]; B = A’; C = 0.5 * (A + B)
C=
1
3
3
5
NB: The apostrophe (‘) indicates transpose operation, i.e.
A’ is the transpose of A.
Manipulating matrices - 2
You can multiply a matrix by a scalar
A= [1 2; 4 5]; k = pi;
B = k*A
B=
3.1416 6.2832
12.5664 15.7080
All the matrix elements get multiplied by k.
Manipulating matrices - 3
Matrix can be multiplied together (provided ...)
A= rand(5,2), B = rand(2, 5), C = A * B
Likewise you can take powers of a (square) matrix,
S_1 = rand(5,5), S_3 = S^3
NB: The function rand(n,m) returns an nxm matrix of
random numbers uniformly distributed between 0 and 1.
Manipulating matrices - 4
Matrices can be multiplied ‘element-by-element’ using the
dot notation for multiplication
A = [1 2; 3 4], B = [10 20; 30 40], C = A .* B
C=
10 40
90 160
Likewise we have a dot-notation for powers, e.g.
D = A.^5
Useful matrices
All matrices below are nxm
• A = zeros(n,m)
• A = ones(n,m)
all zeros
all ones
• A = rand(n,m)
uniformely distributed [0,1]
• A = randn(n, m) normally distributed (mean=0, SD=1)
Plotting
Use plot(x, y) to plot vector y vs. the vector x.
NB: x and y should have the same size
Example
t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
Plotting power spectra
Y = fft(y,512);
Pyy = Y.* conj(Y) / 512;
f = 1000*(0:256)/512;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency (Hz)')
Scripts
Scripts have no input or output arguments. They're useful
for automating series of ML commands.
Scripts operate on existing data in the workspace, or they
can create new data on which to operate.
To create a script: File->New->M-file
Invoke a script by typing its name from the prompt.
Functions
Functions are M-files that accept input arguments and
return output arguments. They operate on variables within
their own workspace. See an example below
function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector
elements.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error('Input must be a vector')
end
y = sum(x)/length(x);
% Actual computation
Exercise: build a DTMF (touch-tone) dialing pad
Freq
(Hz)
697
1209
1336
1477
1633
1
2
3
A
770
4
5
6
B
852
7
8
9
C
941
*
0
#
D
NB: Get info about function ‘sound’