Laplace Transforms I..
Download
Report
Transcript Laplace Transforms I..
Applications of Laplace
Transforms
Instructor: Chia-Ming Tsai
Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.
Contents
•
•
•
•
•
•
•
Introduction
Circuit Element Models
Circuit Analysis
Transfer Functions
State Variables
Network Stability
Summary
Introduction
• To learn how easy it is to work with circuits
in the s domain
• To learn the concept of modeling circuits in
the s domain
• To learn the concept of transfer function in
the s domain
• To learn how to apply the state variable
method for analyzing linear systems with
multiple inputs and multiple outputs
• To learn how the Laplace transform can be
used in stability analysis
Circuit Element Models
• Steps in applying the Laplace transform:
– Transform the circuit from the time domain to the s
domain (a new step to be discussed later)
– Solve the circuit using circuit analysis technique
(nodal/mesh analysis, source transformation, etc.)
– Take the inverse Laplace transform of the solution
and thus obtain the solution in the time domain
s-Domain Models for R and L
For a resistor,
For an inductor,
v (t ) Ri (t )
di (t )
v(t ) L
dt
V ( s ) L sI ( s ) i (0 ) sLI ( s ) Li (0 )
Lv (t ) LRi (t )
V ( s ) RI ( s )
Time domain
1
i (0 )
or I ( s ) V ( s )
sL
s
s domain
s domain
s-Domain Model for C
For a capacitor,
dv(t )
i (t ) C
dt
I ( s ) C sV ( s ) v(0 ) sCV ( s ) Cv(0 )
1
v (0 )
or V ( s )
I ( s)
sC
s
Time domain
s domain
s domain
Summary
For inductor:
For capacitor:
V ( s ) sLI ( s ) Li (0 )
I ( s ) sCV ( s ) Cv(0 )
1
i (0 )
I (s) V (s)
sL
s
1
v (0 )
V ( s)
I ( s)
sC
s
Summary
• Impedance in the s domain
– Z(s)=V(s)/I(s)
• Admittance in the s domain
– Y(s)=1/Z(s)=V(s)/I(s)
Element
Z(s)
Resistor
R
Inductor
sL
Capacitor
1/sC
*Assuming zero initial conditions
Example 1
(1) Transforma tion to the s domain :
1
u (t ) s
Z (1 H) sL s
1
1 3
Z
(
F
)
3
sC s
(2) Applying mesh analysis :
1 3
3
s 1 s I1 s I 2 0
3 I1 s 5 3 I 2 0
s
s
3
I2 3
s 8s 2 18s
3
Vo ( s ) sI 2 2
s 8s 18
3
2
2 ( s 4) 2 ( 2 ) 2
3 4t
vo (t )
e sin 2t t 0
2
Example 2
vo (0) 5 V
Example 2 (Cont’d)
Applying nodal analysis at node a :
Applying the residue method,
10 ( s 1) Vo
Vo Vo
2 0.5
10
10 10 s
A ( s 1)Vo ( s ) |
10
B ( s 2)Vo ( s ) |
15
25s 35
A
B
Vo
( s 1)( s 2) s 1 s 2
s 1
s 2
vo(t) (10e t 15e 2t )u (t )
Example 3
io (0) I 0
V0
I ( s )( R sL ) LI 0 0
s
LI 0
V0
I ( s)
R sL s ( R sL )
V0 R I 0 V0 R
s
sR L
V0 t / V0
R
i (t ) I 0 e
,
R
R
L
Circuit Analysis
• Operators (derivatives and integrals) into
simple multipliers of s and 1/s
• Use algebra to solve the circuit equations
• All of the circuit theorems and relationships
developed for dc circuits are perfectly valid in
the s domain
Example 1
10
Vs
s
i ( 0 ) 1 A
v ( 0) 5 V
V1 Vs V1 0 i (0) V1 v(0) s
0
10 3
5s
s
1 (0.1s )
40 5s
35
30
V1
( s 1)( s 2) s 1 s 2
v1 (t ) 35e t 30e 2t u (t )
Example 2
Solved example 1 by using superposit ion :
30
30
30
V1
( s 1)( s 2) s 1 s 2
v1 (t ) 30e t 30e 2t u (t )
10
10
10
V2
( s 1)( s 2) s 1 s 2
v2 (t ) 10e t 10e 2t u (t )
5s
5
10
V3
( s 1)( s 2) s 1 s 2
v3 (t ) 5e t 10e 2t u (t )
v(t ) v1 (t ) v2 (t ) v3 (t )
35e
(30 10 5)e t (30 10 10)e 2t u (t )
t
30e 2t u (t )
Example 3
Assume that no initial energy is stored.
(a)Find Vo(s) using Thevenin’s theorem.
(b)Find vo(0+) and vo() by apply the
initial- and final-value theorems.
(c) Determine vo(t).
=10u(t)
Example 3: (a)
10 50
Voc VTh 5
s s
To find Z Th , use Z Th Voc I sc
Applying nodal analysis :
10 (V1 2 I x ) 0 V1 0
0
s
5
2s
V
and I x 1
2s
100
V1
50
V1
, Ix
2s 3
2 s s (2 s 3)
V
50 s
Z Th oc
2s 3
I sc 50 s (2 s 3)
5
5
125
50
Vo
VTh
5 Z Th
5 2 s 3 s s ( s 4)
Example 3: (b), (c)
Solution (b) :
125
Vo ( s )
s ( s 4)
The initial - value theorem gives
125
vo (0) lim sVo ( s) lim
0
s
s s 4
The final - value theorem gives
125 125
vo () lim sVo ( s ) lim
s 0
s 0 s 4
4
Solution (c) :
125
A
B
Vo ( s )
s ( s 4) s s 4
Applying the residue method,
125
A sVo ( s )|s 0 4 31.25
125
B ( s 4)Vo ( s )|
31.25
s
4
4
vo (t ) 31.25(1 e 4t )u (t )
Transfer Functions
• The transfer function H(s) is the ratio of the
output response Y(s) to the input excitation X(s),
assuming all initial conditions are zero.
Y ( s)
H ( s)
, Y ( s) X ( s) H ( s)
X ( s)
If x(t ) (t ) , X ( s ) 1
Thus Y ( s ) H ( s ) or y (t ) h(t )
It implies
h(t ) : the unit impulse response of the network
H ( s ) : the Laplace transform of h(t )
Transfer Functions (Cont’d)
• Two ways to find H(s)
– Assume an input and find the output
– Assume an output and find the input (the ladder
method: Ohm’s law + KCL)
• Four kinds of transfer functions
Vo ( s)
I o ( s)
H ( s) Voltage gain
, H ( s) Current gain
Vi ( s)
I i ( s)
V ( s)
H ( s) Impedance
I ( s)
I (s)
, H ( s) Admittance
V ( s)
Example 1
If y (t ) 10e t cos 4t u (t ) when x(t ) e t u (t ).
Find the transfer function and its impulse response.
Solution :
1
10( s 1)
X ( s)
, Y ( s)
2
2
s 1
( s 1) 4
Y (s)
10( s 1)
4
H (s)
10 40
2
2
2
2
X ( s ) ( s 1) 4
( s 1) 4
2
h(t ) 10 (t ) 40e sin 4t u (t )
t
Example 2
Find
H(s)=V0(s)/I0(s).
Solution :
By current division,
( s 4) I 0
I2
( s 4) ( 2 1 2 s )
2( s 4) I 0
V0 2 I 2
s 6 1 2s
V0 ( s )
4 s ( s 4)
H (s)
2
I 0 ( s ) 2 s 12 s 1
Example 2 (The Ladder Method)
Let V0 1 V,
By Ohm' s law, I 2 V0 2 1 2
1
1 4s 1
V1 I 2 2 1
2s
4s
4s
V1
4s 1
I1
s4
4 s ( s 4)
Applying KCL gives
2s 2 12 s 1
I 0 I1 I 2
4 s ( s 4)
V0 1
4s ( s 4)
H ( s)
2
I 0 I 0 2 s 12 s 1
Example 3
Find
(a) H(s) = Vo/Vi,
(b) the impulse response,
(c) the response when vi(t) = u(t) V,
(d) the response when vi(t) = 8cos2t V.
Example 3: (a), (b)
Solution :
By voltage division,
1
Vo
Vab
s 1
1 || ( s 1)
Vab
Vi
1 1 || ( s 1)
( s 1) ( s 2)
Vi
1 ( s 1) ( s 2)
s 1
Vi
2s 3
Vi
1 s 1
Vo
Vi
s 1 2s 3
2s 3
Vo
1
1 1
H ( s)
Vi 2s 3 2 s 3 2
h(t ) 0.5e 3t 2u (t )
Example 3: (c), (d)
Sol : (c)
Sol : (d)
1
vi (t ) u (t ) Vi ( s )
s
Vo ( s ) H ( s )Vi ( s )
8s
vi (t ) 8 cos 2t Vi ( s ) 2
s 4
Vo ( s ) H ( s )Vi ( s )
4s
A
Bs C
A
B
2
3
3
s
4
3
2
3 s
s
s
s
4
s
2 s s
2
2
2
2
24
24
64
1
1
A , B , C
A , B
25
25
25
3
3
24 1
s
4 2
1
3t 2
2
vo (t ) 1 e
u (t ) V Vo ( s )
2
25 s 3 2 s 4 3 s 4
3
24 3t 2
4
vo (t ) e
cos 2t sin 2t u (t ) V
25
3
1
State Variables
• The state variables are those variables which,
if known, allow all other system parameters to
be determined by using only algebraic
equations.
• In an electric circuit, the state variables are the
inductor current and the capacitor voltage
since they collectively describe the energy state
of the system.
State Variable Method
z1 (t )
z (t )
z(t ) 2
z m (t )
The state equation can be arranged as
x Ax Bz
where
x1 (t )
x (t ) the state vector
x (t ) 2 representi ng n
state variable s
xn (t )
y1 (t )
y (t )
2
y(t )
)
t
(
y
p
dx1 (t ) dt x1 (t )
dx (t ) dt x (t )
2
x 2
dxn (t ) dt x n (t )
x Ax Bz
y Cx Dz
State Variable Method (Cont’d)
x Ax Bz
y Cx Dz
Assuming zero initial conditions
Y (s)
H (s)
C ( sI A) 1 B D
Z ( s)
A system matrix
B input coupling matrix
and applying the Laplace transform , where
C output matrix
sX( s ) AX( s ) BZ( s )
D feedforwad matrix
( sI A)X( s ) BZ( s )
X( s ) ( sI A) 1 BZ( s )
I : the identity matrix
Y( s ) CX( s ) DZ(s)
C(sI A) 1 BZ( s ) DZ(s)
In most cases, D 0 .
So the degree of the numerator of
H ( s ) is less than the degree of the
denominato r of H ( s ).
H ( s ) C ( sI A) 1 B
How to Apply State Variable Method
• Steps to apply the state variable method to
circuit analysis:
– Select the inductor current i and capacitor voltage v
as the state variables (define vector x, z)
– Apply KCL and KVL to obtain a set of first-order
differential equations (find matrix A, B)
– Obtain the output equation and put the final result
in state-space representaion (find matrix C)
– H(s)=C(sI-A)-1B
Network Stability
• A circuit is stable if its impulse response h(t) is
bounded as t approaches ; it is unstable if h(t)
grows without bound as t approaches .
• Two requirements for stability
– Degree of N(s) < Degree of D(s)
N (s)
R( s)
n
n 1
If H ( s )
k n s k n 1s k1s k0
D( s)
D( s)
lim h(t )
t
if n 1
– All the poles must lie in the left half of the s plane
e pi t e ( i ji )t e i t 0 only if i 0
Network Stability (Cont’d)
• A circuit is stable when all the poles of its
transfer function H(s) lie in the left half of
the s plane.
• Circuits composed of passive elements (R, L,
and C) and independent sources either are
stable or have poles with zero real parts.
• Active circuits or passive circuits with
controlled sources can supply energy, and
can be unstable.
Example 1
Vo
1 sC
H (s)
Vs R sL 1 sC
1L
2
s s R L 1 LC
p1, 2 2 02
R
2 L
where
1
0 LC
For R, L, C 0 :
0 (stable)
For R 0 :
0 (unstable)
Example 2
Applying mesh analysis gives
Find k for a stable circuit.
1
I2
Vi R sC I1 sC 0
R 1 I I1 kI 0
2
1
sC
sC
1
1
R
I1
V
i
sC
sC
0 k 1 R 1 I 2
sC
sC
The determinan t is
2
1
1
1
R
k
sC sC
sC
sR 2C 2 R k
sC
Let 0 ,
the single pole is given as
k 2R
p 2
RC
For stable operation,
k 2R
p 2 0
RC
k 2R
Summary
• The methodology of circuit analysis using
Laplace transform
– Convert each element to its s-domain model
– Obtain the s-domin solution
– Apply the inverse Laplace transform to obtain the
t-domain solution
Summary
• The transfer function H(s) of a network is the
Laplace transform of the impulse response h(t)
Y ( s)
H ( s)
, Y ( s) X ( s) H ( s)
X ( s)
• A circuit is stable when all the poles of its
transfer function H(s) lie in the left half of the
s plane.