Transcript i(t)

Chapter 5 First-Order Circuits
一阶电路
5.1 Capacitors and Inductors
5.2 The Source-Free Responses of RC
and RL Circuits
5.3 Singularity Functions
5.4 Step Response of an RC Circuit
5.5 Complete Response of an RL Circuit
In this chapter,we shall examine two types of simple circuits:
a circuit comprising a resistor and a capacitor and a circuit
comprising a resistor and an inductor. These are called RC
and RL circuits.
We carry out the analysis of RC and RL circuits by
applying Kirchhoff’s laws, and producing differential
equations. The differential equations resulting from
analyzing RC and RL circuits are of the first order. Hence,
the circuits are collectively known as first-order circuits.
5.1 Capacitors and Inductors 电容和电感
Ⅰ. Capacitors 电容
A capacitor consists of two
conducting plates separated by
an insulator. 绝缘体
Insulator 绝缘体
Conducting Plates
导电极板
dvc
iC
dt
A capacitor properties: 特性
记忆
 Memory
vc
Capacitance 电容(值)  Storage element 储能元件
 Open circuit to dc
Measured in farads (F)
 The voltage on a capacitor cannot
法拉
change abruptly vc (0  )  vc (0  )
Ⅱ. Inductors 电感
An inductor consists of a
coil of conducting wire.
Magnetic linkage 磁链

N
  LiL
Inductance 电感(值)
iL
+ v –
Measured in henrys (H) An inductor properties:
亨利
 Memory 记忆
 Storage element 储能元件
diL
vL
 Short circuit to dc
dt
 The current through an inductor cannot


change abruptly
iL (0 )  iL (0 )
Summary
Resistor(R)
v  iR
2
v
p  i2R 
R
Capacitor(C)
iC
dv
dt
1 2
w  Cv
2
Inductor(L)
di
vL
dt
1 2
w  Li
2
dissipate power storage element storage element
no memory
same
memory
memory
open circuit to dc short circuit to dc
vc (0  )  vc (0  )
iL (0 )  iL (0 )
5.2 The Source-Free Responses of RC and
RL Circuits 一阶电路的零输入响应
Ⅰ.The Source-Free RC Circuit
vc (0  )  V0
vc (0  )  vc (0  )  V0
t >0:
vC  vR
dvc
vc   RC
dt
vc (t )  V0 e  t / RC
vc  vc (0  )e  t / 
Time constant
时间常数
  RC
Source-free response: The response is due to the initial
energy stored and the physical characteristics of the circuit
and not due to some external sources.
The key to working with a source-free RC
circuit is finding:
1. The initial voltage v(0+) across the capacitor.
2. The time constant  .
If there are many resistors in the circuit:
  Req C (s)
•Req is the equivalent resistance of resistors.
vc (t )  V0 e  t / 
  ReqC ( s ) (t  0)
t
v(t )

2
3
4
5
0.36788 V0
0.13534 V0
0.04979 V0
0.01832 V0
0.00674 V0
The time constant of a circuit is the time required for the
response to decay to a factor of 1/e or 36.8 percent of its
initial value.
Ⅱ. The Source-Free RL Circuit
iL (t )  iL (0 )e t /
iL(0+) : The
initial current through the inductor
  L / Req
( s)
Time constant 时间常数
Example 5.1 The switch in the circuit has been closed for a
long time. At t=0, the switch is opened. Calculate i(t) for t>0.
Solution:
t  0:
hence
4  12
 3
4  12
i1 
40
 8A
23
i (t ) 
t  0:
12
i1  6 A
12  4
i(0 )  i(0 )  6 A
Req  (12  4) // 16  8

Thus,
L
2 1
  s
Req 8 4
i(t )  i(0 )e t /  6e 4t A
5.3 Singularity Functions 奇异函数
1. The step function 阶跃函数
0, t  0
u (t )  
1, t  0
The delayed step function:
延迟阶跃函数
0, t  t0
u (t  t0 )  
1, t  t0
The general step function:
0, t  t0
Au(t  t0 )  
 A, t  t0
u(t)
1
0
t
u(t-t0)
1
0
t0
t
A
0
t0
t
Replace a switch by the step function:
0, t  t0
v(t )  
V0 , t  t0
v(t )  V0 u (t  t0 )
冲激函数
2. The impulse function
t 0
 (t )  0

0

0
 (t) (1)
  (t )dt    (t )dt  1
0
The delayed impulse function:
 (t-t0)
t  t0
 (t )  0
(1)
t0 

  (t  t )dt    (t  t )dt  1
0

t
0
0
t0 
du (t )
 (t ) 
dt
t
u (t )    (t )dt

t0
t
5.4 Step Response of an RC Circuit 阶跃响应
vC (0  )  vC (0  )  V0
t  0 : vR  vC  Vs
Ri  vC  Vs
RC
dvC
 vC  Vs
dt
vC (t )  VS  (V0  VS )e t /
The complete response 全响应
(t  0)
  RC (s )
Vs: The steady-state response 稳态响应
(The forced response ) 强制响应
(V0  VS )e t / : The temporary response 暂态响应
(The natural response )
自由响应
vc(t)
V0<VS
VS
t0
V0
vc (t )  
t / 
V

(
V

V
)
e
0
S
 S
t0
V0
0
V0
t
vc(t)
V0>Vs
VS
0
t
vC (t )  VS  (V0  VS )e t /
(t  0)
vc (t ) v f vn
The complete response 全响应
Natural response 自由响应
Forced response 强制响应
vC (t )  V0 e t /  VS (1  e t / )
Source-free response
零输入响应
(t  0)
Zero-state response
零状态响应
The complete response of an RC circuit requires three things:
1. The initial capacitor voltage v(0+).
2. The final capacitor voltage v().
3. The time constant .
v(t )  v()  [v(0 )  v()]e t /
If the switch changes position at time t=t0, the equation is:

v(t )  v()  [v(t0 )  v()]e(t t0 ) /
Example 5.2 The circuit is in steady-state, switch S is
closed at t=0. Calculate vC (t ) when t  0 .
Solution:
vc (0  )  vc (0  )  20 103 110 3  20 V
10
vc () 
110 3  20 103  5 V
10  10  20 .
  ReqC  20 //(10  10) 103 10 106  0.1s
vc (t )  vc ()  [vc (0  )  vc ()]e  t /
 5  15e t / 0.1  5  15e 10t V
Example 5.3 The circuit is in steady-state, switch S moves from
position 1 to 2 at t=0. Calculate vC (t ) when t  0
Solution:
vc (0  )  vc (0  )  8 V
vc ()  4i1  2i1  6i1  12 V
v  10i1
v
Req   10
i1
  Req C  10  0.1  1s
vc (t )  vc ()  [vc (0  )  vc ()]e  t /
 12  (8  12)e t  12  20e t V
5.5 Complete Response of an RL Circuit
i (0  )  i (0  )  I 0
(t  0)
i(t )  i()  [i(0 )  i()]et /
  L / Req
Three-factor method 三要素法
f (t )  f ()  [ f (0 )  f ()]e t /
1. The initial value f(0+).
2. The final value f().
3. The time constant .
Example 5.4 Find i(t) in the circuit for t>0. Assume that the
switch has been closed for a long time.

Solution:
i(0 )  i(0 )  5 A
10
i ( ) 
 2A
23
t0
2
3
10V
Req  2  3  5

L 1/ 3 1

 s
Req
5 15
Thus, i(t )  i()  [i(0 )  i()]e t /
 2  (5  2)e 15t  2  3e 15t A
i
1
H
3
Example 5.5 At t=0, switch 1 is closed, and switch 2 is
closed 4s later. Find i(t) for t>0. Calculate i for t=2s and t=5s.
Solution:
For t  0 :
i(0 )  i(0 )  0 A
4
S1
t0
S2
40V
For 0  t  4 :
40
i ( ) 
 4A
46
Req  4  6  10
L
5 1

  s
Req 10 2
Thus, i(t )  i()  [i(0 )  i()]e t /
2
10V
 4  (0  4)e 2t  4(1  e 2t ) A
6
t4
i
5H
For t  4 :
4
S11
i(4 )  i(4 )  4(1  e 8 )  4 A
SS22
40V
At node a :
v  40 v  10 v

 0
4
2
6
180
v
V
11
v 30
i ( )  
 2.73 A
6 11
22
Req  4 // 2  6 

3
tt  00
v
a
66

tt  44
22

ii
55H
H
10V
10V
L
5
15



s
Req 22 / 3 22
Hence, i(t )  i()  [i(4 )  i()]e  (t 4) /
1.47( t  4 )
A
 2.73  (4  2.73)e (t 4) /  2.73  1.27e
0,

i (t )  4(1  e  2t ) A
2.73  1.27e 1.47( t  4 ) A

t0
0t 4
t4
At t=2s,
i(2)  4(1  e 4 )  3.93 A
At t=5s,
i(5)  2.73  1.27e 1.47  3.02 A
部分电路图和内容参考了:
电路基础(第3版),清华大学出版社
电路(第5版),高等教育出版社
特此感谢!