Interstrip Characteristics of n-on-p FZ Silicon Detectors

Download Report

Transcript Interstrip Characteristics of n-on-p FZ Silicon Detectors

Interstrip Characteristics of ATLAS07
n-on-p FZ Silicon Detectors
S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. Sadrozinski
Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA
Y. Unno, S. Terada, Y. Ikegami, T. Kohriki
Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
K. Hara, H. Hatano, S. Mitsui, M. Yamada
University of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 305-9751, Japan
A. Chilingarov, H. Fox
Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
1
Need to start Large-Scale Production: HPK
Silicon Detectors for the High Luminosity Upgrade
• What are the operational
characteristics of irradiated
n-on-p FZ detectors?
– Can adequate strip isolation
be achieved after irradiation?
– Does it depend on specific
surface treatment? (p-spray,
p-stop)
– Do detectors with better strip
isolation have lower
breakdown?
– Are complicated punchthrough structures needed for
adequate punch-through
protection?
RD50 , CERN Nov 2009
• Signal collection requires
- High voltage operation
• Higher rate of particles requires
- higher segmentation of detecting electrodes
-acceptable data transfer rate
• N-strips in P-bulk wafer (n-in-p)
- always depleting from strip side
- lower cost
- collecting electrons
H. F.-W. Sadrozinski, UC Santa Cruz
2
History of ATLAS07 Submissions @ HPK
X1: p-stop,
p-spray+p-stop
Weak spots identified
Mask modification
X2 ~
with modified mask
X3
many doping
densities
S1
p-stop, 30 wafers
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
S2
p-stop, p-spray
90 wafers 3
3
n-in-p Sensor
• Past Japanese studies
–
4 inch (100 mm) wafers
•
•
–
6 inch (150 mm) wafers
•
•
•
–
FZ<111> (~6k Ωcm)
MCZ<100> (~900 Ωcm)
FZ1<100>(~6.7k Ωcm)
FZ2<100>(~6.2k Ωcm)
MCZ<100>(~2.3k Ωcm)
FZ, MCZ available at HPK
• ATLAS07 submission
– 6 inch (150 mm) wafers
• FZ1<100>(~6.7k Ωcm)
• (FZ2<100>(~6.2k Ωcm)
• Miniature sensors
–
1cm x 1cm
•
• Full size prototype sensors for Stave program
–
9.75 cm x 9.75 cm
•
RD50 , CERN Nov 2009
Irradiation studies
4 segments: two "axial" and two "stereo"
(inclined) strips
4
4
H. F.-W. Sadrozinski, UC Santa•CruzShort strips
24 n-in-p Miniature Sensors
• Radiation damage study
–
Strip Isolation (Zone1, Zone2, Zone3)
•
•
–
–
–
Structure: p-stop, p-spray, p-stop+p-spray
Density: 1x, 2x, 4x, 10x1012 ions/cm2, ...
"Punch-through Protection" structures (Zone4)
Narrow metal effect (Zone5)
Wide pitch effect (Zone6)
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
5
5
Evaluations
• Irradiations
– 70 MeV protons at CYRIC (Tohoku Univ., Japan)
– Reactor neutrons at Ljubljana (Slovenia)
• Measurements
– Full-size sensors (see J. Bohm’s talk)
• C-V, i-V, single-strip measurements
– Onset of Microdischarge
• I-V
• Hot electron
Interstrip resistance
– Charge collection efficiency (CCE) (a few slides by A. Affolder)
•
90Sr
beta ray
– Surface:
• Interstrip resistance
• Interstrip capacitance
– Punch-through Protection
• Dynamic resistance with a constant bias voltage to the backplane
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
6
6
Interstrip Resistance Measurements
• Using the detectors DC-pads
• The setup purpose is to measure the current
in the test strip due to the applied voltage on
the neighbors using a parameter analyzer.
Measurement was done at different bias
voltages.
• Data taken is plotted as test current against
the neighbor voltage
2
Rint 
di1 dv2
I1 vs V2
5.00E-06
4.00E-06
Current(A)
3.00E-06
2.00E-06
5 volts
1.00E-06
20 volts
0.00E+00
y = -3.33E-07x + 1.45E-07
-1.00E-06
y = -1.07E-06x + 1.33E-07
y = -1.64E-06x + 9.88E-08
-2.00E-06
y = -2.45E-06x + 7.16E-08
-3.00E-06
50 volts
100 volts
300 volts
y = -3.55E-06x + 5.82E-08
-4.00E-06
-1.5
-1
-0.5
0
Voltage (V)
RD50 , CERN Nov 2009
0.5
1
1.5
H. F.-W. Sadrozinski, UC Santa Cruz
7
Interstrip Resistance Results
Interstrip Resistance for Detectors from the 3rd Series
1.0E+13
Φ = 1.14e13 neq
Pre-rad
1.0E+12
W46-BZ3-P1 (POST RAD)
W44-BZ2-P2 (POST RAD)
W40-BZ2-P2 (PRE RAD)
W40-BZ2-P2 (POST RAD)
1.0E+10
W40-BZ3-P1 (PRE RAD)
Total p-dose = 4*1012 cm-2
W40-BZ3-P1 (POST RAD)
1.0E+09
W33-BZ3-P1 (PRE RAD)
W33-BZ3-P1 (POST RAD)
W23-BZ3-P15 (PRE RAD)
1.0E+08
Total p-dose = 2*1012 cm-2
W23-BZ3-P15 (POST RAD)
W02-BZ2-P2 (PRE RAD)
1.0E+07
W02-BZ2-P2 (POST RAD)
W02-BZ4B-P10 (PRE-RAD)
Total p-dose = 1*1012 cm-2
1.0E+06
W02-BZ4B-P10 (POST-RAD)
W02-BZ5-P11 (PRE-RAD)
W02-BZ5-P11 (POST-RAD)
1.0E+05
0
50
100
150
200
250
300
Bias Voltage (V)
W18-BZ4D-P22 (PRE-RAD)
W18-BZ4D-22 (POST-RAD)
1.0E+14
W18-BZ4C-P16 (PRE-RAD)
W18-BZ4C-P16 (POS-RAD)
W18-BZ4B-P10 (PRE-RAD)
1.0E+13
W18-BZ4B-P10 (POST-RAD)
W18-BZ4A-P4 (PRE-RAD)
W18-BZ4A-P4 (POST-RAD)
W18-BZ3-P18 (POST-RAD)
1.0E+12
W18-BZ3-P15 (POST-RAD)
W18-BZ2-P17 (POST-RAD)
W18-BZ2-P14 (POST-RAD)
1.0E+11
W17-BZ4D-P22 (PRE-RAD)
W17-BZ4D-P22 (POST-RAD)
W17-BZ4C-P16 (PRE-RAD)
W17-BZ4C-P16 (POST-RAD)
1.0E+10
W17-BZ4B-P10 (PRE-RAD)
W17-BZ4B-P10 (POST-RAD)
1.00E+12
1012
Rint
Φ = 1e13 neq
Fit
1.00E+11
1011
Rint
Rint(Ohms)
(Ω)
(filled = pre-rad, open squares = 1e12 neq , open diamonds = 1e13 neq)
Resistance (ohms)
W46-BZ3-P1 (PRE RAD)
1.0E+11
Resistance (Ohms)
• To first order, interstrip resistance
depends not on the specific zone, but
depends on the total p-dose applied.
• Higher total p-dose means better
strip isolation after irradiation.
• All Series 1 detectors exhibit a good
post-rad Rint (>10^8 Ohms) behavior,
even after being irradiated with
protons up to 1e13 neq
1.00E+10
1010
1.00E+09
109
y = 1.43E+06e1.90E-12x
108
1.00E+08
107
1.00E+07
W17-BZ4A-P4 (PRE-RAD)
1.0E+09
W17-BZ4A-P4 (POST-RAD)
Series 1
Total P-Dose = 4*1012 cm-2 p-stop only
1.0E+08
0
50
100
150
Bias Voltage (V)
RD50 , CERN Nov 2009
200
W17-BZ3-P9 (PRE-RAD)
1.00E+06
106
W17-BZ3-P9 (POST-RAD)
W17-BZ3-P13 (PRE-RAD)
250
300
W17-BZ3-P13 (POST-RAD)
W17-BZ2-P2 (POST-RAD)
0
12
12
2E+12
4E+12
2x10
4x10
Total P-Dose (1/cm^2)
(1/cm2)
12
6E+12
6x10
W17-BZ2-P14 (POST-RAD)
H. F.-W. Sadrozinski, UC Santa Cruz
8
Interstrip Capacitance
Interstrips capacitance for 3rd series
(@1MHz)
800
750
Capacitence(fF)
• AC pads are used.
• 5 probes are used; one on the test
strip, one on each neighbor, and two
more to ground the next neighbors.
W46-BZ3-P1(PRE RAD)
700
W46-BZ3-P1(POST RAD)
W40-BZ3-P1 (PRE RAD)
650
W40-BZ3-P1 (POST RAD)
600
W33-BZ3-P1 (PRE RAD)
W23-BZ3-P15 (PRE RAD)
550
W12-BZ3-P1 (PRE RAD)
W12-BZ3-P1 (POST RAD)
500
W02-BZ3-P1 (PRE RAD)
450
0
500
1000
Bias Voltage(V)
Interstrips capacitance for 3rd series, wafer 1, 2 and 4
(@1MHz)
660
Capacitence(fF)
640
W02-BZ4B-P10 (POST RAD)
620
W02-BZ4A-P4 (POST RAD)
W02-BZ2-P2 (POST RAD)
W02-BZ1-P7 (POST RAD)
600
W02-BZ4C-P10 (POST RAD)
W02-BZ4D-P22 (POST RAD)
W44-BZ2-P2 (POST RAD)
580
560
0
200
400
600
800
1000
Bias Voltage(V)
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
9
Rint vs. Cint
Resistace (Ω)
1.0E+12
W46-BZ3-P1 (PRE RAD)
1.0E+11
W46-BZ3-P1 (POST RAD)
1.0E+10
W40-BZ3-P1 (POST RAD)
1.0E+09
W33-BZ3-P1 (POST RAD)
1.0E+08
W23-BZ3-P15 (POST RAD)
1.0E+07
W12-BZ3-P1 (POST RAD)
W40-BZ3-P1 (PRE RAD)
W33-BZ3-P1 (PRE RAD)
W23-BZ3-P15 (PRE RAD)
W12-BZ3-P1 (PRE RAD)
W02-BZ3-P1 (PRE RAD)
W02-BZ3-P1 (POST RAD)
1.0E+06
550
650
750
Capacitance (fF)
Φ = 1e13 neq
Zone 4
Resistace (Ω)
1.E+10
1.E+09
1.E+08
1.E+07
Zone 5
1.E+06
500
600
700
800
900
W46-BZ3-P1
W44-BZ2-P2
W40-BZ3-P1
W35-BZ1-P19
W35-BZ2-P17
W35-BZ5-P11
W33-BZ3-P1
W31-BZ5-P11
W25-BZ5-P11
W12-BZ3-P1
W02-BZ1-P7
W02-BZ2-P2
W02-BZ4A-P4
W02-BZ4B-P10
W02-BZ4C-P16
W02-BZ4D-P22
W1-BZ5-P11
W1-BZ2-P17
W1-BZ1-P19
• Helpful to make scatter plot between
Rint and Cint
• Strip isolation is best in the upper left
corner, and worst in the lower right.
• Dependence of post-rad Cint on specific
zone is seen.
• Zone 5 (narrow metal) has the highest
Post-rad Cint without providing better
breakdown performance.
50
45
Φ = 1e13 neq
40
W02-BZ1-P7
W02-BZ3-P1
W02-BZ4A-P4
W02-BZ4B-P10
W02-BZ4C-P16
W02-BZ4D-P22
W02-BZ5-P11
W12-BZ3-P1
W23-BZ3-P15
W33-BZ3-P1
W44-BZ2-P2
W46-BZ3-P1
35
30
Current (µA)
Rint vs. Cint for the 3rd series
1.0E+13
25
20
15
10
5
0
0
200
400
600
Bias Voltage (V)
800
1000
Capacitance (fF)
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
10
Punch-Through Protection:
(against large strip voltages)
Z4A
• Zone 4 detectors include an additional punch-through
structures.
• Apply a voltage to DC pad and measure the induced
current between DC pad and bias resistor.
• The effective resistance is then
Z4B
Reff  dVtest / dI test
• Punch-through resistance is defined as
RPT  (1 / Reff 1 / Rbias )1
Z4C
Z4D
where Rbias is the resistance of the bias resistor.
2.0
Effective Resistance (MΩ)
Effective Resistance (MΩ)
Φ = 1.2e13 neq
1.8
1.4
1.2
1
w42-bz2
w42-bz4d
w44-bz3
w44-bz4d
w25-bz3
w33-bz3
w02-bz3
w11-bz4a
w11-bz4b
w11-bz4c
w11-bz4d
0.8
0.6
0.4
0.2
1.6
1.4
Total p-dose = 4e12 cm-2
p-stop only
1.2
1.0
RPT = Rbias
0.8
Z3
Z4A
Z4B
Z4C
Z4D
0.6
0.4
0.2
0
-50
-40
-30
-20
-10
Test Voltage (Volts)
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
0
0.0
-50
-25
0
25
50
Test Voltage (Volts)
11
Punch-Through Voltage
20
15
Total pdose =
2e12
10
12
10
8
6
4
30
20
RD50 , CERN Nov 2009
Total pdose =
2e12
W33-BZ3-P13
W25-BZ3-P9
W11-BZ4D-P22
W11-BZ4C-P16
W11-BZ4B-P10
W11-BZ4A-P4
W02-BZ3-P6
Total pdose =
1e13
Total p-dose
= 2e13
Total p-dose
= 1e13
Total p-dose
= 4e12
10
0
1.35x1012
1.20x1013
Φ=1.2e13 neq
40
0
1.35x1012
1.35x1012
p-stop only =
50
2
pre-rad
p-spray + p-stop =
1.18x1015
1.18x1015
H. F.-W. Sadrozinski, UC Santa Cruz
W43-BZ3-P3
W43-BZ4A-P4
W43-BZ4B-P10
W43-BZ4C-P16
W47-BZ3-P9
W47-BZ4A-P4
W47-BZ4B-P10
W16-BZ3-P6
W16-BZ4A-P4
W16-BZ4B-P10
W16-BZ4C-P16
W16-BZ4D-P22
W42-BZ3-P6
W45-BZ4A-P4
W45-BZ4B-P10
W45-BZ4C-P16
W45-BZ4D
W46-BZ3-P6
W49-BZ4A-P4
W49-BZ4B-P10
W49-BZ4C-P16
W49-BZ4D-P22
14
W44-BZ3-P21
W42-BZ4D-P22
5
p-spray only =
PT Voltage (Volts)
16
Total pdose =
4e12
Total p-dose
= 4e12
Total p-dose
= 2e12
60
Zone 3
Total p-dose = 4e12 p-stop only
18
PT Voltage (Volts)
25
0
20
p-stop only =
Total p-dose
= 4e12
W42-BZ2-P8
• For Pre-rad detectors, the punch-through voltage is
dependent on the wafer number (i.e. the total p-dose).
• Dependence on the total p-dose is seen after
irradiation, higher p-dose means lower PT Voltage.
• Zone 3 exhibits similar PT voltage to Zone 4, without
the having a complicated PT structure.
• Further, Zone 3 shows adequate protection even at
high fluences.
p-spray + p-stop =
30
PT Voltage (Volts)
RPT  Rbias
p-spray only =
W44-BZ4d-P22
• Punch-through Voltage is defined as the voltage
where
12
Comments on the Effective Resistance
W18-BZ3-P18 1e13neq
2.00E+06
Effective Resistance (Ω)
• The effective resistance can also be defined by
taking the integral form of the equation given
earlier.
• This would have the advantage of incorporating
the total current that can be drained from the
strip to the bias rail and providing the effective
resistance for charges to escape through.
• The disadvantage to the integral form is that it
is less sensitive to the onset of punch-through, so
it is less suitable for defining the punch-through
voltage.
1.50E+06
-20deg (Differential)
-20deg (Integral)
1.00E+06
5.00E+05
-70
-60
-50
-40
-30
-20
0.00E+00
-10
0
Test Voltage (Volts)
W18-BZ3-P18 1e13neq
Effective Resistance (Ω)
2.00E+06
-70
1.50E+06
-20deg
0deg
20deg
1.00E+06
5.00E+05
-60
-50
-40
-30
-20
0.00E+00
-10
0
• Measurements at different temperatures
reveal a clear temperature dependence on the
effective resistance.
• The temperature dependence seems to come
mainly from the polysilicon bias resistor.
• The value of the punch-through voltage does
not depend on the temperature.
Test Voltage (Volts)
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
13
Charge Collection Studies with ATLAS07 n-on-p
FZ Silicon Detectors
(compiled by A. Affolder)
A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormaldt
Physics Department, Liverpool University, Liverpool, United Kingdom
S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W.
Sadrozinski
Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064
USA
-
- V. Cindro, G. Kramberger, I. Mandic, M. Mikuz
Josef Stefan Institute and University of Ljubljan, Slovenia
Y. Unno, S. Terada, Y. Ikegami, T. Kohriki
Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801,
Japan
K. Hara, H. Hatano, S. Mitsui, M. Yamada
University of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 3059751, Japan
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
14
Summary of Results from Different Sources
500 V
Are these variances large?
Is this systematically low
HPK data shown from all sites (with annealing corrections, i.e. CCE reduced by 20%+/-10%). Pion irradiation measurements corrected for annealing during run
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
15
15
Liverpool Only Data
Correction to remove
annealing too strong at lower
fluences
500 V
• Remove normalization, annealing effects
• Results look consistent
– Would assume variance due to slight systematic differences in
normalizations/annealing corrections
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
16
16
Summary
500 V
• NIEL appears to work for charge collection with n-in-p FZ detectors
• Micron and HPK consistent over measure fluence range
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
17
17
Conclusions
• Good cooperation between ATLAS groups and HPK: 3 pre-series and 2 full
series runs in about 2 years.
• All HPK detectors have a breakdown voltage that exceeds 900V, exceeding
the specifications.
•To first order, the interstrip resistance does not depend on the specific zone,
but instead depends on the total p-dose of p-impurities on the surface (p-stop
+ p-spray).
• The interstrip capacitance shows little change after irradiation and is
dependent on the specific zones.
• Zone 5 (narrow metal) has the highest interstrip capacitance after irradiation
(Don’t use narrow metal!).
• The punch-through voltage depends on the total p-dose in all configurations
(p-stop only, p-stop+spray, p-spray only). Wafers with the highest total p-dose
have a higher punch-through voltage, which holds true even after irradiation.
• After irradiation, Zone 3 detectors (Gap = 70 mm) have a similar punchthrough voltage as Zone 4 detectors, which are made with a specific punchthrough protection structure (Gap = 30 mm) . Needs explanation!
• The acceptable punch-through voltage of the Zone 3 sensors with p-stops of
4*1012 cm-2 extends to proton fluences beyond 1015 p/cm2.
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
18
Acknowledgments
•We acknowledge the good collaboration with the Hamamatsu Photonics
team.
• The invaluable assistance of CYRIC and their staff in carrying out the
radiation is acknowledged.
ATLAS Upgrade Silicon Strip Detector Collaboration:
H. Chen, J. Kierstead, Z. Li, D. Lynn , Brookhaven National Laboratory
J.R. Carter, L.B.A. Hommels, D. Robinson, University of Cambridge
K. Jakobs, M. Köhler, U. Parzefall, Universitat Freiburg
A. Clark, D. Ferrere, S. Gonzalez Sevilla, University of Geneva
R. Bates, C. Buttar, L. Eklund, V. O'Shea, University of Glasgow
Y. Unno, S. Terada, Y. Ikegami, T. Kohriki, KEK
A. Chilingarov, H. Fox, Lancaster University
A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormald, University of Liverpool
V. Cindro, G. Kramberger, I. Mandic, M. Mikuz, Josef Stefan Institute and University of Ljubljana
I. Gorelov, M. Hoeferkamp, J. Metcalfe, S. Seidel, K. Toms, University of New Mexico
Z. Dolezal, P. Kodys, Charles University in Prague
J.Bohm, M.Mikestikova, Academy of Sciences of the Czech Republic
C. Betancourt, G. Bredeson, N. Dawson, V. Fadeyev, M. Gerling, A. A. Grillo, S. Lindgren, P. Maddock, F. Martinez-McKinney, H. F.W. Sadrozinski, S. Sattari, A. Seiden, J. Von Wilpert, J. Wright, UC Santa Cruz
R. French, S. Paganis, D. Tsionou, The University of Sheffield
B. DeWilde, R. Maunu, D. Puldon, R. McCarthy, D. Schamberger, Stony Brook University
K. Hara, H. Hatano, S. Mitsui, M. Yamada, N. Hamasaki, University of Tsukuba
M. Minano, C. Garcia, C. Lacasta, S. Marti i Garcia , IFIC (Centro Mixto CSIC-UVEG) ,
and K. Yamamura, S. Kamada, Hamamatsu Photonics K.K.
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
19
RD50 Bet Oct 17, 2006
“Will the "Kramberger effect" be traced to a temperature effect?”
Betting was heavily against (all in SFrs)
Against
Moll
5
Vladimir Cindro 1000
Noman
2
Thor
5
Gregor
5
VladPad
5
Simon
5
Alex?
10
Uli
10
47
Sum
59.75
For
Hartmut
Thor
Panja
Maurice
Elena
VladPad
5
40 kr
3.75
2
10Kopek
2
12.75
Results shown at Vilnius makes it unlikely that temperature is the sole cause.
Proposal to pay off the bet in a communal way:
Bookie will forgo his usual proceeds (50% of total) and pay for
drinks in the Bar tonight at 7 pm
RD50 , CERN Nov 2009
H. F.-W. Sadrozinski, UC Santa Cruz
20