Astroparticle Physics - Indico

Download Report

Transcript Astroparticle Physics - Indico

Astroparticle Physics (2/3)
Nathalie PALANQUE-DELABROUILLE
CEA-Saclay
CERN Summer Student Lectures, August 2004
1) What is Astroparticle Physics ?
Big Bang Nucleosynthesis
Cosmic Microwave Background
2) Dark matter, dark energy
Evidence for dark matter
Candidates and experimental status
Supernovae and dark energy
3) High energy astrophysics
1
Dark matter in clusters
Zwicky, 1933
Mass of luminous matter
=
10%
Gravitational mass
Zwicky
Amas de Coma
2
Rotation curves (planets)
v2 G m Mc
m
=
r
r2
v =
Rotation of planets
Earth :
Saturn :
G M
c
/ r
Associated
rotation curve
1 yr (at 150 106 km)
30 yrs (at 1,4 109 km)
v=30 km/s
v=10 km/s
3
Rotation curve of spiral galaxies
NGC 3198
Doppler distortion across galaxy
 velocity distribution
 Flat rotation curve !
90% of gravitational mass
is invisible (DARK HALOs)
4
Gravitational lensing
Einstein
ring

HST
Luminous mass ~ 1% Gravitational mass
5
Summary of evidence
Dark
Energy
Stars
(~2%)
(~70%)
Non
baryonic
DM
(~25%)
Baryonic
DM
(~3%)
W = r / rc
W = 1 for k = 0
6
Lecture outline
1) What is Astroparticle Physics ?
Big Bang Nucleosynthesis
Cosmic Microwave Background
2) Dark matter, dark energy
Evidence for dark matter
Candidates and experimental status
Baryonic (EROS, MACHO)
Exotic (Edelweiss, DAMA, Antares)
Supernovae and dark energy
3) High energy astrophysics
7
Dark matter candidates
Baryonic
(astrophysical candidates)
Non baryonic
(particle candidates)
Molecular
clouds
Planets
Axions
Compact
objects
Brown
dwarfs
Red
dwarfs
…
White
dwarfs
Neutron
stars
Black
holes
Neutrinos
WIMPS
8
Dark matter candidates
Baryonic
(astrophysical candidates)
Molecular
clouds
Compact
objects
(10-7
Msun  ~10 Msun)
Non baryonic
(particle candidates)
Mass?
Neutrinos
Axions
Mass?
WIMPS
Accelerators
Direct search
9
Principles of microlensing
Angular separation of images ~ 10-3 rad
 Only 1 (combined) image, amplified
Motion of deflector (220 km/s)
 Duration tE ~ 90 M/Msun days
10
Microlensing light curve
Luminosity
To discriminate
against variable
stars :
Achromatic
(Red & Blue)
Symmetric
Impact parameter
11
Targets (EROS, MACHO)
Event rate : ~ 1 per year per 20 million stars monitored
Magellanic clouds : 200 000 ly away (edge of halo?)
(Milky Way ~ 70 000 ly in diameter)
(not to scale)
Milky Way
Earth
Halo
Magellanic Clouds
LCM
SCM
 - >10 000 variable stars
~30 million stars monitored:  - >100 SN
 - Microlensing events ?
12
Initial results
Candidates (microlensing technique validated), tE ~ 30 days
Over half of the dark halo in the form of
dark objects of ~ 0.5 solar mass !
LCM, 1993
tE ~ 30 days
SMC, 1998
tE ~ 120 days
13
Final results
14
White dwarfs
White dwarf = final state of low mass star
38 white dwarfs found in old plates
- moving fast  belongs to halo (vs. disk)
- old (i.e. cold)  1st population of stars in our Galaxy
White dwarfs (~1 Msun) may compose 3 to 35% of the halo
15
Conclusions on baryonic DM
Favored candidates (compact astrophysical objects)
rejected on all mass range
(only small window remaining at ~ 10-100 Msun)
Gas
Cold molecular clouds
…
16
Non baryonic DM
> 80% of DM is non baryonic
Hot DM ?
n
Cold DM ?
Axions
WIMPS
(invoked to solve strong
CP violation pb in SM)
Significant if 10-5 < ma < 10-3 eV
17
Structure formation
Simulations of
DM density maps
Hubble Deep Field
HDM wipes out
structure on
small scales
CDM creates
too many
sub-structures?
18
Neutrinos as HDM
- exist as relic from Big Bang (~ 300 cm-3)
- (now) known to have mass: neutrino oscillations
1
10-1
n masses (eV) from
n oscillations
(most likely solution)
10-2
Atm. n
10-3
Solar n
10-4
10-5
n1
n2
n3
n contribution to matter density: Wv ~ Sm / 46 eV
m ~ 0.05 eV  Wv ~ 0.003
19
Weakly Interacting Massive Particles
If SUSY exists
- production of sparticles
in early universe
- all decay except LSP
(conservation of R-parity)
 relic from Big Bang
- m ~ 30 GeV (accelerator)
- annihilate through
X X
- relic density W ~ 0.3
for typical weak
annihilation rates
equilibrium
abundance
Freeze
out
actual
abundance
Increasing
<sAv>
Neq  e-m/T
X = m/T (time)
20
Direct detection of WIMPS
If halo DM made of WIMPS
~ 500 WIMPS/m3 with v ~ 220 km/s
 > 10 000 WIMPs/cm2/s on Earth (from -vsun)
Experimental signature :
nuclear recoil
n WIMP
n WIMP
(vs. electronic “recoil”)
g e-
e-
Main source
of background
(radioactivity)
Requirement : High mass detectors
Low radioactive background (discrimination)
21
Background rejection
- Deep underground
- Event by event discrimination of nuclear vs. electronic recoil
ZEPLIN II
Diodes
HDMS,…
Ionisation
EDELWEISS,
CDMS
Scintillators
Scintillation
Heat
DAMA, ZEPLIN I,
UKDMC,…
CRESST,
ROSEBUD
CRESST, CUORE, ROSEBUD
Bolometers
22
Annual modulation
Motion of Earth in the  wind
d = 30o
vsun = 220 km/s
vEarth =
30 km/s
Modulation of
annual rate  7%
Max in June
DAMA Annual Modulation 2-6 keV Bin
Residual (kg-1 day-1 keV-1 )
0.10
DAMA
NaI-1
DAMA
NaI-2
DAMA
NaI-3
DAMA
NaI-4
BUT
1 signature
only
Not confirmed
independantly
0.05
0.00
-0.05
Residual
DAMA Fit
-0.10
300
600
m ~
GeV
900 44-62 1200
1500
1800
Day Number
23
Edelweiss: detector
In Modane underground
laboratory
Negligible neutron background
(~ 0,01 evt/kg/day)
Dilution cryostat
low background
(temperature ~15mK)
Archeological
lead shielding
Detectors
3 x 320g
bolometers
24
Edelweiss: analysis
1.5
Heat + Ionisation
Background free analysis
No event in signal region
Ionisation / recoil
Electronic recoil (g)
1
90%
99.9%
Nuclear recoil (WIMP, n)
0.5
90%
0
0
50
100
150
Recoil energy (keV)
200
25
Conclusions on direct detection
Regions above
the curves
excluded by
experiments
Regions of
WIMPs
models
26
Indirect detection of WIMPs
Energy loss by elastic scattering
with massive bodies
(halos, Earth, Sun, galactic center)
Gravitational capture + annihilation
Halo
High energy astronomy
  gg AMS, GLAST, VERITAS, BESS,
CELESTE, CAPRICE, MILAGRO…
Earth, Sun, GC n telescopes
  Xn
SuperK, Baksan, IMB, MACRO
AMANDA, ANTARES, Baïkal…
 Lecture 3
27
Lecture outline
1) What is Astroparticle Physics ?
Big Bang Nucleosynthesis
Cosmic Microwave Background
2) Dark matter, dark energy
Evidence for dark matter
Candidates and experimental status
Baryonic (EROS, MACHO)
Exotic (Edelweiss, DAMA, Antares)
Supernovae and dark energy
3) High energy astrophysics
28
Geometry of the Universe
1 = Wk(t) + ∑Wx(t) + WL(t)
Curvature
Energy density of components
(matter, radiation)
Wg ~ 2.47 x 10-5
Density of
dark energy
Expansion vs geometry: qO = Wm / 2 - WL
29
Measurement of the geometry
Closed
Universe
AT A GIVEN DISTANCE
Known physical size
Known luminosity
Flat
Universe
Open
Universe
angle depends on geometry
flux depends on geometry
30
Life of a small star (<8 Msun)
31
White dwarfs in binary systems
SN Ia
Very luminous (L ~ 1010 Lsun), out to high z
Standard candles (1.4 Msun)
~ 1 to 2 / century / galaxy
32
Light curves
Unique parameter
(strech factor)
33
SuperNova Legacy Survey
3 steps
- discovery (differential photometry)
4 deg2 monitored from CFHT (Hawaii)
- identification (spectrum)
- photometric follow-up  light curve
(SNLS : same images as discovery)
34
CCD detectors at CFHT
RCA1 1981-1986
1 CCD, 320 x 512
champ 2’ x 3.5’
RCA2 1986-1995
1 CCD, 640 x 1024
champ 2’ x 3.5’
SAIC1 1990
1 CCD, 1K x 1K
champ 4.2’ x 4.2’
Lick2 1992
1 CCD, 2K x 2K
champ 7’ x 7’
MOCAM 1994
4 CCDs, 4K x 4K
champ 14’ x 14’
UH8K 1996
8 CCDs, 8K x 8K
champ 28’ x 28’
CFH12K 1999
12 CCDs, 12K x 8K
champ 42’ x 28’
MegaCam 2002
40 CCDs, 20K x 18K
champ 1° x 1°
35
Hubble diagram
m = - 2.5 log F + cst = 5 log (H0 DL) + M - 5 log H0 + 25
fainter
cz
0
Magnitude m
H0DL
z
mesure de H0
z grand : mesure de Wm,WL
Accelerated expansion
= smaller rate in the past
WL
= more time to reach a given z
= larger distance of propagation
of the photons
= smaller flux
Supernova
Cosmology
Project
1+z = a(tobs)/a(tem)
At a given z
Calan Tololo
Hamuy et al.,
A.J.1996
Redshift z
older
36
Initial constraints (1998)
42 supernovae
q0 = WM/2 - WL < 0 :
Accelerating Universe
If flat (Wtot = 1) :
WM = 0.28
WL = 0.72
37
Concordance
2000
2002
LSS
CMB
Expected precision
with JDEM (>2010)
38