Transcript energy

ESE534
Computer Organization
Day 6: February 1, 2012
Energy, Power, Reliability
1
Penn ESE534 Spring2012 -- Mehta & DeHon
Today
• Energy tradeoffs
• Voltage limits and leakage
• Variations
2
Penn ESE534 Spring2012 -- Mehta & DeHon
At Issue
• Many now argue energy will be the
ultimate scaling limit
– (not lithography, costs, …)
• Proliferation of portable and handheld
devices
– …battery size and life biggest issues
• Cooling, energy costs may dominate cost
of electronics
– Even server room applications
3
Penn ESE534 Spring2012 -- Mehta & DeHon
Preclass 1
• 1GHz case
– Voltage?
– Energy per Operation?
– Power required for 2 processors?
• 2GHz case
– Voltage?
– Energy per Operation?
– Power required for 1 processor?
4
Penn ESE534 Spring2012 -- Mehta & DeHon
Energy and Delay
1 2
E CV
2
tgd=Q/I=(CV)/I
Id,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
5
Penn ESE534 Spring2012 -- Mehta & DeHon
Energy/Delay Tradeoff
• EV2
• tgd1/V
1
E  CV 2
2
¿gd=(CV)/I
Id,sat (Vgs-VTH)2
• We can trade speed for energy
• E×(tgd)2 constant
Martin et al. Power-Aware Computing, Kluwer 2001
http://caltechcstr.library.caltech.edu/308/
6
Penn ESE534 Spring2012 -- Mehta & DeHon
Area/Time Tradeoff
• Also have Area-Time tradeoffs
– HW2 spatial vs temporal multipliers
– See more next week
• Compensate slowdown with additional
parallelism
• …trade Area for Energy  Architectural Option
7
Penn ESE534 Spring2012 -- Mehta & DeHon
Question
• By how much can we reduce energy?
• What limits us?
8
Penn ESE534 Spring2012 -- Mehta & DeHon
Challenge: Power
9
Penn ESE534 Spring2012 -- Mehta & DeHon
Origin of Power Challenge
• Limited capacity to remove heat
– ~100W/cm2 force air
– 1-10W/cm2 ambient
• Transistors per chip grow at Moore’s Law rate
= (1/F)2
• Energy/transistor must decrease at this rate
to keep constant power density
• P/tr  CV2f
• E/tr  CV2
– …but V scaling more slowly than F
10
Penn ESE534 Spring2012 -- Mehta & DeHon
Energy per Operation
1
2
E  CV
2
Ctotal = # transistors × Ctr
Ctr scales (down) as F
# transistors scales as F-2
…ok if V scales as F…
Penn ESE534 Spring2012 -- Mehta & DeHon
11
ITRS Vdd Scaling:
More slowly than F
12
Penn ESE534 Spring2012 -- Mehta & DeHon
ITRS CV2 Scaling:
More slowly than (1/F)2
13
Penn ESE534 Spring2012 -- Mehta & DeHon
Origin of Power Challenge
• Transistors per chip
grow at Moore’s
Law rate = (1/F)2
• Energy/transistor
must decrease at
this rate to keep
constant
• E/tr  CV2
14
Penn ESE534 Spring2012 -- Mehta & DeHon
Historical Power Scaling
[Horowitz et al. / IEDM 2005]
Penn ESE534 Spring2012 -- Mehta & DeHon
15
Microprocessor Power Density
Watts
The Future of Computing Performance: Game Over or Next Level?
National Academy Press, 2011
16
Penn ESE534 Spring2012 -- Mehta
& DeHon
http://www.nap.edu/catalog.php?record_id=12980
Intel Power Density
17
Penn ESE534 Spring2012 -- Mehta & DeHon
Impact
Power Limits Integration
Density Limit
Constant Power Limit
45nm
32nm
Penn ESE534 Spring2012 -- Mehta & Source:
DeHon
22nm
16nm
Carter/Intel
11nm
18
18
Impact
• Power density is limiting scaling
– Can already place more transistors on a chip than
we can afford to turn on!
• Power is potential challenge/limiter for all
future chips.
– Only turn on small percentage of transistors?
– Operate those transistors as much slower
frequency?
– Find a way to drop Vdd?
19
Penn ESE534 Spring2012 -- Mehta & DeHon
How far can we reduce Vdd?
20
Penn ESE534 Spring2012 -- Mehta & DeHon
Limits
• Ability to turn off the transistor
• Parameter Variations
• Noise (not covered today)
21
Penn ESE534 Spring2012 -- Mehta & DeHon
MOSFET Conduction
From: http://en.wikipedia.org/wiki/File:IvsV_mosfet.png
Penn ESE534 Spring2012 -- Mehta & DeHon
22
Transistor Conduction
• Three regions
– Subthreshold (Vgs<VTH)
– Linear (Vgs>VTH) and (Vds < (Vgs-VTH))
– Saturation (Vgs>VTH) and (Vds > (Vgs-VTH))
23
Penn ESE534 Spring2012 -- Mehta & DeHon
Saturation Region
• (Vgs>VTH)
• (Vds > (Vgs-VTH))
Ids,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
24
Penn ESE534 Spring2012 -- Mehta & DeHon
Linear Region
• (Vgs>VTH)
• (Vds < (Vgs-VTH))
Ids,lin=(mCOX)(W/L)((Vgs-VTH)Vds-(Vds)2/2)
25
Penn ESE534 Spring2012 -- Mehta & DeHon
Subthreshold Region
• (Vgs<VTH)
V

Isub  IVT 10
gs VTH
/ S

S

(ln(
10
))
kT
/
q
[Frank, IBM J. R&D v46n2/3p235]
26
Penn ESE534 Spring2012 -- Mehta & DeHon
Operating a Transistor
• Concerned about Ion and Ioff
• Ion drive (saturation) current for charging
– Determines speed: Tgd = CV/I
• Ioff leakage current
– Determines leakage power/energy:
• Pleak = V×Ileak
• Eleak = V×Ileak×Tcycle
27
Penn ESE534 Spring2012 -- Mehta & DeHon
Leakage
• To avoid leakage want Ioff very small
• Switch V from Vdd to 0
• Vgs in off state is 0 (Vgs<VTH)
V

Isub  IVT 10
gs VTH
Ioff  IVT 10
/ S
VTH  / S 
28
Penn ESE534 Spring2012 -- Mehta & DeHon
Leakage
Ioff  IVT 10
•
•
•
•
VTH  / S 
S90mV for single gate
S70mV for double gate
For lowest leakage, want S small, VTH large
4 orders of magnitude IVT/IoffVTH>280mV
Leakage limits VTH in turn limits Vdd 29
Penn ESE534 Spring2012 -- Mehta & DeHon
How maximize Ion/Ioff ?
• Maximize Ion/Ioff – for given Vdd ? EswCV2
• Get to pick VTH, Vdd
Id,sat=(mCOX/2)(W/L)(Vgs-VTH
2
)
Id,lin=(mCOX)(W/L)(Vgs-VTH)Vds-(Vds)2/2
V

Isub  IVT 10
gs VTH
Penn ESE534 Spring2012 -- Mehta & DeHon
/ S
30
Preclass 2
• E = Esw + Eleak
• Eleak = V×Ileak×Tcycle
• EswCV2
V

Isub  IVT 10
gs VTH
• Ichip-leak = Ndevices ×Itr-leak
31
Penn ESE534 Spring2012 -- Mehta & DeHon
/ S
Preclass 2
• Eleak(V) ?
• Tcycle(V)?
32
Penn ESE534 Spring2012 -- Mehta & DeHon
In Class
• Assign calculations
– SIMD – each student computes for a
different Voltage
• Collect results on board
– Should go quick once students have time
to calculate
• Identify minimum energy point and
discuss
33
Penn ESE534 Spring2012 -- Mehta & DeHon
Graph for In Class
35
Penn ESE534 Spring2012 -- Mehta & DeHon
Impact
• Subthreshold slope prevents us from
scaling voltage down arbitrarily.
• Induces a minimum operating energy.
36
Penn ESE534 Spring2012 -- Mehta & DeHon
Challenge: Variation
37
Penn ESE534 Spring2012 -- Mehta & DeHon
Statistical
Dopant
Count and
Placement
38
Penn ESE534 Spring2012 -- Mehta & DeHon
[Bernstein et al, IBM JRD 2006]
Vth Variability @ 65nm
39
Penn ESE534 Spring2012 -- Mehta & DeHon
[Bernstein et al, IBM JRD 2006]
Variation
• Fewer dopants, atoms  increasing Variation
• How do we deal with variation?
% variation in VTH
(From ITRS prediction)
40
Penn ESE534 Spring2012 -- Mehta & DeHon
40
Impact of Variation?
• Higher VTH?
– Not drive as strongly  slower
– Id,sat (Vgs-VTH)2
• Lower VTH?
– Not turn off as well  leaks more
Ioff  IVT 10
VTH  / S 
41
Penn ESE534 Spring2012 -- Mehta & DeHon
Variation
• Margin for expected variation
• Must assume VTH can be any value in range
Ion,min=Ion(Vth,max)
Probability Distribution
Id,sat (Vgs-VTH)2
Vgs = Vdd
VTH
42
Penn ESE534 Spring2012 -- Mehta & DeHon
Margining
• Must raise Vdd to increase drive strength
• Increase energy
Ion,min=Ion(Vth,max)
Probability Distribution
Id,sat (Vgs-VTH)2
Vgs = Vdd
VTH
43
Penn ESE534 Spring2012 -- Mehta & DeHon
Variation
• Increasing variation forces higher voltages
– On top of our leakage limits
44
Penn ESE534 Spring2012 -- Mehta & DeHon
44
• Margins growing due to
increasing variation
Probability Distribution
Variations
Old
New
Delay
• Margined value may be worse than older
technology?
45
Penn ESE534 Spring2012 -- Mehta & DeHon
End of Energy Scaling?
Black nominal
Grey with variation
[Bol et al., IEEE TR VLSI Sys 17(10):1508—1519]46
Penn ESE534 Spring2012 -- Mehta & DeHon
Chips Growing
• Larger chips (billions of transistors) 
sample further out on distribution curve
From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg
47
Penn ESE534 Spring2012 -- Mehta & DeHon
Admin
• Homework due Monday
– Section 3.5 has changed
– Please grab updated copy
• Reading for Monday on web
• André back on Monday
48
Penn ESE534 Spring2012 -- Mehta & DeHon
Big Ideas
• Can trade time for energy
– … area for energy
• Variation and leakage limit voltage scaling
• Power major limiter going forward
– Can put more transistors on a chip than can switch
• Continued scaling demands
– Deal with noisier components
• High variation
• … other noise sources
49
Penn ESE534 Spring2012 -- Mehta & DeHon