RF TRANSCEIVERS - VLSI Systems Lab
Download
Report
Transcript RF TRANSCEIVERS - VLSI Systems Lab
Various SoC-Related
Applications, Business Models,
Global Industries & CareerLife
Planning
Four Major Technology Drivers
•
•
•
•
RF and AMS
SoC
MPU
(Embedded) Memory
RF and AMS (Analog/Mixed
Signal)
Application Spectrum of Various
Competing RF Technologies
Cost is one of the key factors determining
the location of boundaries between the
kinds of RF semiconductors (e.g., Si,
SiGe, GaAs, and InP)
1. Boundary between the group IV semiconductors Si
and SiGe and the III-V semiconductor GaAs has been
moving to higher frequencies with time.
2. Eventually, metamorphic high electron mobility
transistors (MHEMTs) may displace both GaAs
pseudomorphic high electron mobility transistors
(PHEMTs) and InP high electron mobility transistors
(HEMTs).
3. The wide bandgap semiconductors such as SiC and
GaN will be used for infrastructure such as base
stations at frequencies typically above about 2 GHz.
Near-term AMS Technology Req’t
Long-term AMS Technology Req’t
1. Standards and protocols influence considerably
parameters such as operating frequencies, channel
bandwidth, and transmit power.
2. Increased RF performance for silicon is usually
achieved by geometrical scaling. Increased RF
performance for III-V compound semiconductors is
achieved by optimizing carrier transport properties
through materials and bandgap engineering.
3. During the last two decades, technologies based on
III-V compounds have established new business
opportunities for wireless communications systems.
4. When high volumes of product are expected, silicon
and more recently silicon-germanium replace the
III-Vs in those markets for which these group IVs
can deliver appropriate performance at low cost.
Electronic design and automation (EDA) software
tools are not equipped today to handle the
integration of the four distinct wireless system
building blocks—
1) analog/mixed-signal (including certain digital
functions),
2) transceiver,
3) power amplifier, and
4) power management.
RF AND AMS TECHNOLOGIES
FOR
WIRELESS COMMUNICATIONS
• ANALOG AND MIXED-SIGNAL
• RF TRANSCEIVERS
• POWER AMPLIFIERS AND POWER
MANAGEMENT
• MILLIMETER WAVE
ANALOG AND MIXED-SIGNAL
1) analog speed devices
2) analog precision MOS device scaling but
with relatively high voltages to achieve high
signal to noise ratios and low signal
distortion,
3) capacitors, and resistors; all devices are
optimized for precision, matching
performance, 1/f noise, low non-linearity,
and low temperature gradients.
RF TRANSCEIVERS
1. Applications are focused on low noise amplifiers
(LNAs), frequency synthesis and logic, voltage controlled
oscillators (VCO), driver amplifiers, and filters.
2. Devices include NPN (n-type emitter, p-type base,
and n-type collector) bipolar
transistors, RF-MOS (NMOS) field effect transistors,
inductors, varactors, RF capacitors, and resistors.
3. RF transceivers in the 800 MHz to 10 GHz range which
covers both local and wide area standards such as global
standard for mobile (GSM), code division multiple access
(CDMA), wideband CDMA (WCDMA), 802.11 protocol for
local area networks, and ultra wideband (UWB).
POWER AMPLIFIERS AND
POWER MANAGEMENT
1. High voltage devices are used in base
station power amplifiers, such as Si LDMOS,
GaAs FET, GaAs PHEMT, SiC FET
and GaN FET.
2. PAs for terminals that require relatively
high breakdown voltage devices [HBTs,
PHEMTs, MOSFETs, and bipolars] are
included herein. The key driving forces are
integration of components and cost.
MILLIMETER WAVE
• Today, compound semiconductors dominate the 10–100
GHz range. The device types most commonly used for
analog MM-wave applications are HEMT, PHEMT, and
MHEMT while MESFET and HBT predominate for mixedsignal and high speed applications.
• Except for MESFET and SiGe HBT, all device types employ
epitaxial layer stacks that are composed of ternary or
quaternary compounds derived from column III and V of the
periodic chart.
• Device properties are critically dependent on the selection
of materials, thickness, and doping in the stack, which are
proprietary to the manufacturer.
• Trade-offs among power, efficiency, breakdown, noise
figure, linearity, and other performance parameters abound.
1. Manufacturing non-recurring engineering (NRE) costs are on
the order of one million dollars (mask set + probe card);
design NRE costs routinely reach tens of millions of dollars,
with design shortfalls being responsible for silicon re-spins
that multiply manufacturing NRE.
2. Manufacturing cycle times are measured in weeks, with low
uncertainty; Design and verification cycle times are
measured in months or years, with high uncertainty.
3. Software can account for 80% of embedded-systems
development cost;
Test cost has grown exponentially relative to manufacturing
cost;
Verification engineers outnumber design engineers on
microprocessor project teams.
Challenges due to Silicon complexity ;
impact of process scaling, new materials or
device/interconnect architectures
1. Non-ideal scaling of device parasitics and supply/threshold
voltages (leakage, power management, circuit/device
innovation, current delivery)
2. Coupled high-frequency devices and interconnects
(noise/interference, signal integrity analysis and management,
substrate coupling, delay variation due to cross-coupling)
3. Manufacturing variability (statistical process modeling and
characterization, yield, leakage power)
4. Scaling of global interconnect performance relative to device
performance (communication, synchronization)
5. Decreased reliability (gate insulator tunneling and breakdown
integrity, joule heating and electromigration, single-event
upset, general fault-tolerance)
6. Complexity of manufacturing handoff (reticle enhancement
and mask writing/inspection flow, NRE cost).
7. Process variability (library characterization, analog and digital
circuit performance, error-tolerant design, layout reuse,
reliable and predictable implementation platforms)
Challenges due to
System Complexity ; exponentially
increasing transistor counts
1. Reuse (support for hierarchical design, heterogeneous SOC
2.
3.
4.
5.
6.
integration especially for analog/mixed-signal)
Verification and test (specification capture, design for verifiability,
verification reuse for heterogeneous SOC, system-level and
software verification, verification of analog/mixed-signal and novel
devices, self-test, intelligent noise/delay fault testing, tester timing
limits, test reuse)
Cost-driven design optimization (manufacturing cost modeling and
analysis, quality metrics, co-optimization at diepackage-system
levels, optimization with respect to multiple system objectives such
as fault tolerance, testability, etc.)
Embedded software design (predictable platform-based system
design methodologies, codesign with hardware and for networked
system environments, software verification/analysis)
Reliable implementation platforms (predictable chip implementation
onto multiple circuit fabrics, higher-level handoff to implementation)
Design process management (design team size and geographic
distribution, data management, collaborative design support,
“design through system” supply chain management, metrics and
continuous process improvement)
SoC
SoC MARKET DRIVERS
I. Portable and Wireless
•
•
•
•
1.
2.
3.
4.
Size/weight ratio: peak in 2004
Battery life: peak in 2004
Function: 2×/2 years
Time-to-market: ASAP
II. Broadband
•
•
•
•
•
•
1.
2.
3.
4.
5.
6.
Bandwidth: 2× / 9 months
Function: 20%/yr increase
Deployment/Operation Cost: flat
Reliability: asymptotic 99.999%
Time-in-market: long
Power: W/m3 of system
III. Internet Switching
•
•
•
•
1.
2.
3.
4.
Bandwidth: 4×/3–4 yrs.
Reliability
Time-to-market: ASAP
Power: W/m3 of system
IV. Mass Storage
•
•
•
1. Density: 60% increase/year
2. Speed: 2× by 2007
3. Form factor: shift toward 2.5"
V. Consumer
•
•
•
•
•
•
1.
2.
3.
4.
5.
6.
Cost: strong downward pressure
Time-to-market: <12 mos
Function: high novelty
Form factor
Durability/safety
Conservation/ecology
VI. Computer
1. Speed: 2×/2 years
2. Memory density: 2×/2 years
3. Power: flat to decreasing, driven
by cost and W/m3
4. Form factor: shrinking size
5. Reliability
VII. Automotive
1. Functionality
2. Ruggedness
(external environment, noise)
3. Reliability and safety
4. Cost
First Integration of Technologies in
SOC with Standard CMOS Process
SOC MULTI-TECHNOLOGY
• The need to build heterogeneous systems on a
single chip is driven by such considerations as
cost, form-factor, connection speed/overhead,
and reliability.
• Today, a number of technologies (MEMS, GaAs)
are more cost-effectively flipped onto or
integrated side-by-side with silicon in the same
module depending also on the area and pin-count
restrictions of the respective product (e.g. Flash,
DRAM).
• SIP or SoC ?
SOC HIGH-PERFORMANCE
1. Examples of SOC-HP include network
processors and high-end gaming
applications.
2. Historically, chip I/O speed (per-pin
bandwidth) has been scaling much more
slowly than internal clock frequency due to
compatibility with existing slow I/O
standards, but the primary limitation has
been that unterminated CMOS signals on
printed circuit boards are difficult to run at
significantly greater than 100MHz due to
slow settling times.
SOC HIGH-PERFORMANCE
3. During the past decade, high-speed links in
technology initially developed for long-haul
communication networks have found increasing
use in other applications. The high-speed I/O
eliminates the slow board settling problems by
using point-to-point connections and treating the
wire as a transmission line. Today the fastest of
these serial links can run at 10Gbit/s per pin.
4. A high-speed link has four main parts: 1) a
transmitter to convert bits to an electrical signal
that is injected into the board-level wire, 2) the
wire itself, 3) a receiver that converts the signal at
the end of the wire back to bits, and 4) a timing
recovery circuit that compensates for the delay of
the wire and samples the signal on the wire at the
right place to get the correct data.
5. Broadly speaking, high-speed links are used in
optical systems, chip-to-chip connections, and
backplane connections.
SOC LOW-COST, LOW-POWER
1. Examples of SOC-LP include portable and
wireless applications such as PDAs or digital
camera chips.
2. LOP(Low Operating Power) and LSTP(Low
Standby Power)
–
SoC-related Business
Models
Foundry
– Independent Device Manufacturer (IDM)
– ASSP Provider (Fabless)
– IP Provider (Chipless)
– System House
– Design Service Providers (Design House)
– EDA Vendors
– Embedded Software Developers
– Assembly House (Chipak, ASE, Anam)
– Others
• Mask House (Dupont,…)
• Equipment Manufacturer
• Wafer/Materials Supplier
Foundry
– Silicon foundry offers 0.09+ micron digital +
analog, RF, MEMS …
– long IP (free, priced) list desirable
– MPW runs for prototyping
– Reticle generation + fabrication
– P&R, testing, packaging service extra
– TSMC, UMC, Chartered, SMIC, Dongbu-Anam,..
Testing
– DFT(Design-for-testability) desirable
– Overhead due to test circuitry in speed,
area, power 5%
– BIST(Built-in Self Test), Full/Partial Scan
JTAG for board-level testing
– Before/After Packaging/Burn-in
각 나라의 SoC 개발 전략과 현황
• 미국; ITRS, Standard Org., Leading Universities,
SIA/Sematech/SRC, Darpa/NSF, MOSIS, VC’s,
Nasdaq.
• 유럽; Big system industries(Nokia,
SGS,Philips,Eriksson,Siemens…), EC
consolidation, IMEC
• 일본; VDEC/VSAC, Silicon Seabelt, Japan TRS,
System Giants (Sony, Toshiba,..)
• 이스라엘 ; embedded software, encryption, major
research centers.
• 대만 ; Si-Soft project
• 중국 ; 상해, 심천, 광주, 북경 (BOT system, 국립대)
• 인도 ; Bangalore
Brilliant Taiwan IC Design & Foundry
Unit: USD Billion
95
96
97
98
99
00
95 - 01
CAGR
01
Taiwan Fabless
Revenue
0.7
0.8
1.3
1.3
2.2
3.3
3.6
31%
Worldwide
Fabless Revenue
5.9
6.7
7.6
8.7
11.7
16.6
13.9
15%
12%
12%
17%
15%
19%
20%
26%
Taiwan Foundry
Revenue
1.1
1.4
2.0
2.8
4.9
9.0
6.1
33%
Worldwide
Foundry Revenue
5.1
5.0
5.1
5.3
7.5
12.9
8.3
8%
21%
27%
39%
52%
65%
% of share
% of share
70%
73%
Source: Dataquest, FSA, ITRI
Foundry Ranked 1 Worldwide
IC Design Ranked 2 Worldwide, next to USA
Worldwide Top 20 Fabless
Unit:USD Million
2001
Companies
Rank
Nvidia*
1
Qualcomm*
2
Xilinx
3
VIA
4
Broadcom
5
Altera
6
Cirrus Logic
7
MediaTek
8
ATI*
9
SanDisk
10
Qlogic
11
PMC-Sierra
12
Lattice
13
SST
14
ESS
15
16 Globespan Virata
Marvell
17
Realtek
18
Legerity*
19
Sunplus
20
Source: ITIS (2002/03)
2001(e)
2000
1,300
1,180
1,150
1,012
962
839
534
456
465
366
353
323
295
294
271
270
252
216
210
197
735
1,250
1,565
984
1,132
1,376
739
411
711
601
318
694
568
490
303
348
132
194
260
201
01/00
Growth%
76.9%
-5.6%
-26.5%
2.8%
-15.0%
-39.0%
-27.7%
10.9%
-34.6%
-39.1%
11.0%
-53.5%
-48.1%
-40.0%
-10.6%
-22.4%
90.9%
11.3%
-19.2%
-2.0%
00/99
Growth%
96.0%
9.0%
74.0%
183.0%
121.0%
64.0%
39.0%
138.0%
0.0%
143.0%
79.0%
165.0%
76.0%
292.0%
-3.0%
521.0%
--
74.0%
--
56.0%
Country
U.S
U.S
U.S
TW
U.S
U.S
U.S
TW
U.S
U.S
U.S
U.S
U.S
U.S
U.S
U.S
U.S
TW
U.S
TW
Note: *Refer to IC Insights statistics
Visibility of Taiwan Fabless
% of WW Sales
25.9%
Singapore
H K / China
6%
20.7%
19.6%
16%
1999
S Korea
21%
2000
2001(e)
Taiwan in WW Top 10
2
1
2
Taiwan in WW Top 20
3
4
4
Taiwan 57%
Asia Pacific Fabless Nos. in 2000
Source:Dataquest(2001/10)
Note:SiS became an IDM in 2000, not a fabless thereafter
Source:IT IS (2002/03)
World Semiconductor Market by Region
World Semi Market by Application
한국내 반도체특허 출원 현황
2002(2001) 세계 반도체 매출 top 10 기업
세계 비메모리 매출 Top 10 + 삼성
2001 세계 Micro-components Market Share
2002 ASSP/ASIC M/S World Top 10
2002 Analog 반도체 World Top 10
우리나라 2002-2006 학사 이상
인력 수요
일본의 아스카 프로젝트
일본의 ASPLA Project
각국의 SoC 관련 project
Major Issues/Challenges
of SoC
SoC 가 가져오는 기회
• 고속 성장하는 consumer product 의 특징은
portable, 저전력 소모, 짧은 TTM (Time-toMarket)임.
• 이외에도 medical/bio/health, smart home,
intelligent building, automotive/vehicle (최신
BMW 에는 processor core 가 1000개 내장됨),
military 시장에서도 SoC 의 엄청난 기능/가격
비, 성능/전력비는 새 응용을 열고 있다.
– 사람의 수명이 길어지고, 출산율은 줄므로 생명과 복
지, 교육 시장이 커 진다.
SoC 가 가져오는 기회
• 메모리와 마이크로프로세서가 견인해
온 반도체공정과 full custom 설계기술
-> SoC 에 의한 시스템설계와 IP 활용
기술이 시장을 주도.
• Volume 시장을 target 할 수 밖에 없음.
– 0.13 micron 공정의 NRE cost ; $ 1M
– 300 mm wafer 공정은 200 mm 의 1.3 배
의 비용으로 2.25 배의 chip 을 얻음.
SoC 가 주는 도전(Overall)
• Market to address; What to design. What
are killer applications to justify volume
production?
• How to deal with many different players.
(foundry, EDA vendor, IP vendor, system
house, software/firmware/RTOS vendor,
test/packaging house,…)
• How to reduce the TTM (Time-to-market).
• How to reduce the production cost
SoC 가 주는 도전(process)
• How to integrate various process
technologies (MEMS, analog, DRAM).
• How to handle/model VDSM (Very
Deep Sub-Micron) effect.
• Process uniformity, yield, reliability
• DFM (Design for Manufacturability)
한국의 SoC 설계기술
의 발전 전략
SoC in Society, Economy,
Industry, Life and FUTURE!
• IT is the lasting Key technology.
• SoC is the ultimate core mechanism for
implementing IT.
• Nearly all advanced/competitive
countries keep investing in IT.
IT 산업에서 SoC 의 비중
• IT 산업에서 Embedded System (ES)
의 역할과 비중의 증대 ; 현재 약 25%,
향후 5-7 년 후 약 40% 에 접근할 것으
로 보임.
• 대부분(95%)의 Embedded System 은
SoC 로 구현될 것임.
• 향후 7 년 후에 우리 나라 경제에서
SoC 가 차지하는 비중은 33% 에 육박
할 것으로 보임.
Fabless House 가 SoC 의 승부처
• SoC 산업의 구성요소는 Foundry, System
House, Fabless House (IP Vendor 포함),
EDA Vendor, IDM (Independent Device
Manufacturer) 임. 현재 시장 규모는 대략
(20;40;10;30) 이나, 향후 7년 후에는
(20;30;30;20) 으로 될 것으로 전망함.
• SoC 산업분야 중에서 가장 빨리 성장하는
Fabless Company 의 경우 World top 20 내
에 미국 16, 대만 4개임.(한국도 일본도 전무
함)
우리나라의 SoC 경쟁력
• SoC 국가 경쟁력은 1)system 착상/설
계능력, 2)Chip 설계능력, 3)내수시장
의 크기와 국제마케팅능력. 4)chip 제
조기술에 대한 종합 score 로 평가해
볼 수 있다.
• 이러한 기준에서 지금 우리나라의 SoC
경쟁력은 미국, 일본, 대만에 확실히 뒤
져 있고, 캐나다, 프랑스, 독일, 이탈리
아, 중국, 영국, 이스라엘 등과 경쟁하
는 입장이다.
SoC 에 대한 우리 나라의 입장
• 중국등 경쟁국에 대하여 반도체,TFT
LCD, CDMA 단말기등 일부 산업에서
가지는 경쟁력차이를 유지/확장하는 유
일한 길은 SoC 사업을 활성화하는 길
밖에 없음.
– DRAM 산업은 profitability 뿐 아니라, 돈
을 번다 해도 번 돈을 거의 모두 계속 차세
대 공장 건설에 투자해야 함.
– TFT LCD 산업은 자본집약적 산업으로 언
제든지 경쟁국에 추월 당할 가능성이 큼.
• System 산업의 경쟁력과 부가가치를
높이는 길, 역시 시스템 내에 내장되는
SoC 의 가치/비중을 높이는 것임.
SoC 가 우리에게 주는 기회 요인들
• Automobile industry 의 고부가가치화;
– BMW 최신기종에는 processor 가
1000 개!
• Internet, cellular 등 거대한 국내외 통신
시장에서의 지속적인 성장의 기회;
– Qualcomm 은 CDMA 기술 하나로 세
계 2위의 fabless 반도체 (SoC 설계)
회사임.
• Multi-media 단말기, health/defense 시
장
SoC 관점의 한국의 SWOT 분석
• Weakness: 다양성을 다루는데 약함, 즉 분야간/기능
간 협력(학제적) 마인드 부족 경청과 협상력 부족(배
달민족), 체계적인 개념 정립과 깊은 사고 훈련이 약
함. 개인의 능력과시를 전체 시스템 rule 준수보다 더
중요하게 여김. 영어와 세계시민감각 부족(유아독존).
질보다 양, 내용보다 형식 우선주의, 근시안적 사고
• Threat: 중국, 인도, 대만, 선진제국과의 경쟁 심화.
이공계기피심화현상.
• Strength: 도전정신(이길 수 있다). 향학/성취 열정.
자신감(우리는 해냈다/할 수 있다).
• Opportunity: 반도체, 통신, 자동차 산업의 존재. 내수
시장 있음. 정부의 과학기술 R&D 투자.
직업의 선택
(직업/분야/직장/경력)의 선택
1) 선택 시 고려할 점
• 나의 기술적 취향/능력과
사회의 수요와 여건을 잘 살피라.
• 분야는 전문적 적성/능력으로,
직업(연구,판매,관리,교육,중재…)
은 일반적 적성/능력으로 선택.
(직업/분야/직장/경력)의 선택
2) 직업의 선택
–
내가 좋아하고, 보람을 느끼고, 잘 할 수 있는 것
(educate, research, develop, marketing & sales,
policy, …)
–
내가 필요한 것을 제공해 주는 것(자유, 돈, 명예, 권한
…)
–
유행 따라, 가족의 강요에 따라, 일시적 충동(경쟁의식,
감정, 욕심)따라 하지 말 것.
–
그 직업에 필요한데 내가 부족한 것은 계획성 있게 보
완해 갈 것.(No one is perfect from the beginning.)
(직업/분야/직장/경력)의 선택
3) 분야의 선택
– 내가 배운 기술/지식이 효과적으로 적용되는
분야 (기투자 분의 효용성)
– 내가 앞으로 재미있게 해 나갈 수 있는 분야
(실력과 관심)
– 사회의 수요, 시장과 기술의 발전 추세를 고려
– Career plan과 연계 (도달할 탁월의 수준과 활
용방안)
(직업/분야/직장/경력)의 선택
4) 직장의 선택
– 명확한 목표가 있고 윤리적이고 우수한(기술
or 비기술) 사람들이 있는 직장.
– 내가 가치 있는 공헌을 할 수 있는 곳(내가 그
들을 행복하게 해 줄 수 있나?)
– 적어도 5년은 옮기지 않도록 하라.
– 조국을 생각하라.(적어도 조국이 살도록, 조국
을 통하여 세계가 행복하도록 처신하라.)
(직업/분야/직장/경력)의 선택
5) 경력의 선택 ; 공부해서 남 주냐? -> “남 주
기 위해 죽도록 공부하라.”
1) 남을 돕거나, 2) 사람을 키우거나 3) 이러한 인프
3
라를 만들거나
2
1
create
product/IP
earn
$
Serve others
&
Educate people
Establish infrastructure for innovation,
education & welfare
Improve skills
&
Build forces
1 : 자선 cycle
2 : 교육 cycle
3 : 정치 cycle
어떤 사람을 어떻
게 키울 것이냐?
LESSON #1
• 세 가지 Fundamental 이 강한 사람
이 필요.
– 깊이 생각하는 능력/추진력
– Basic Concept 에 대한 확실한 이해
– 대화/협동 능력
LESSON #2; 연결
• Sector 간, 분야간의 교류와 협력을 위한
infra 를 구축하고 이를 통해 Synergy (TTM,
Cost saving 등) 를 올려야 한다.
–
–
–
–
–
–
Government and private sector
Industry and academia
System industry and IC industry
hardware designers and software programmers
System designers and chip designers
Among IC industries in the pre-competitive
stage
1) 개인의 경력/전공 ; 주력분야에서 탁월
하고 인접분야와 연결고리가 있어야!
wireless
전자기
통신
xDSL, switch
MMIC
반도체
회로
VLSI
2) 국가의 경쟁력;교육/연구/business의 연결
교 육
연구/개발
창업/상품화
실력 향상의 효율
동기(motivation)
핵심기술(돌파력)
응용기술(대응능력)
지식 : 고속 단방향 흐름
다자간 쌍방향
3) 기업의 경쟁력; 기술과 비기술의 연결
Top of mountain
특허전략
정상 공격조
경영
투자유치
제휴,M&A
시장심리
지원조
Base Camp
기술표준
.
.
.
한국/참여정부의 10 대 신성장 동력 산업(SoC
designer 의 비중; 전체 산업의 34%)
•
•
•
•
•
•
•
•
•
•
차세대 반도체 (40%)
지능형 로보트 (25%)
지능형 Home Network (50%)
미래형 자동차 (Telematics) (50%)
Display (25%)
디지털 TV (80%)
이동 통신 (70%)
Software 및 Digital Contents
차세대 전지
신약 및 바이오
SoC = 기회
SOC : System 과 Chip 을 연결함으
로써 생기는 Opportunity