Transcript Slide 1

From ferromagnetic to non-magnetic semiconductor spintronics:
Spin-injection Hall effect
Tomas Jungwirth
Institute of Physics ASCR
Jairo Sinova, Karel Výborný, Jan Zemen, Jan
Mašek, Alexander Shick, František Máca,
Jorg Wunderlich, Vít Novák, Kamil Olejník, et al.
University of Nottingham
Bryan Gallagher, Richard Campion, Kevin
Edmonds, Andrew Rushforth, et al.
Hitachi Cambridge, Univ. Cambridge
Jorg Wunderlich, Andrew Irvine, Byonguk Park, et al.
Texas A&M University
Jairo Sinova, Liviu Zarbo, et al.
AMR and GMR (TMR) sensors: dawn of spintronics
Inductive read elements
Magnetoresistive read elements
1980’s-1990’s
Ferromagnetism & spin-orbit coupling
 anisotropic magnetoresistance
~ 1% MR effect
Ferromagnetism only
 giant (tunnel) magnetoresistance
~ 100% MR effect
magnetization
current
Lord Kelvin 1857
Fert, Grunberg et al. 1988
Renewed interest in SO induced MRs in ferromagnetic semiconductors
Ohno Science ’98
~ 1000% MR effect & gate controlled
Wunderlich et al. PRL ’06
Schlapps et al. PRB `09
Coulomb blockade AMR: likely the most sensitive spintronic transistors to date
p- or n-type FET depending on magnetization  non-volatile programmable logic, etc.
SO induced MRs: AMR & anomalous Hall effect
Ordinary Hall effect:
response in normal metals to external
magnetic field via Lorentz force
Anomalous Hal effect:
response to internal spin polarization in ferromagnets
via spin-orbit coupling
Hall 1879
Hall 1881
B
_
M
FL
__
FSO
I
I
V
V
Tc in (Ga,Mn)As upto ~190 K but AHE survives and dominates HE far above Tc
OHE
AHE
Ruzmetov et al. PRB ’04
(Ga,Mn)As: simple band structure of the host SC
Quantitative
AHE theory
j=3/2
Jungwirth et al.
PRL ’02
HH
HH & LH Fermi surfaces
Spherical HH Kohn-Luttinger 3D model 
Rashba and Dresselhaus 2D models
Intense theory research of AHE in model 2D R&D systems
H SO
1   

S  ev  E
mc 2
Nagaosa et al RMP ‘’09 in press (arXiv:0904.4154)
Taming spins in non-magnetic materials: spin-Hall effect
Ordinary Hall effect:
response in normal metals to external
magnetic field via classical Lorentz force
Anomalous Hal effect:
response to internal spin polarization in ferromagnets
via quantum-relativistic spin-orbit coupling
Hall 1879
Hall 1881
B
_
__
M
FL
FSO
I
I
V
V
Spin Hall effect
spin-dependent deflection  transverse edge spin polarization
_
__
FSO
Wunderlich et al. arXives ’04 (PRL ’05)
Kato et al. Science ’04
FSO
I || E
Polarized EL from a planar LED
Theory and experiment: ~10% polarization over ~10nm wide edge region
More taming of spins by spin-orbit coupling
Spin-injection from a ferromagnet
Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection by incident circularly polarized light
+
Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection Hall effect
+
+ + +
–
–
–
Spin-dependent deflection due to spin-orbit coupling
Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection Hall effect
+
+
–
–
+
–
+
–
+
–
+
+ +
+
– –
–
– –
+ + +
–
+
–
Spin-dependent deflection due to spin-orbit coupling
 transverse (Hall) electrical voltage in steady state
Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection Hall effect
+
+
–
–
–
+
+
–
+
+
–
+
–
Built-in electric fields in SC structure  another spin-orbit
coupling effect which can lead to spin precession
Hall voltages measure local spin orientation
Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection Hall effect
+
+
–
–
–
+
+
+
–
+
–
+
–
Built-in electric fields in SC structure can be modified by external gate voltage
Hall signals changed by gate  transverse-voltage spintronic transistor
Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09
More taming of spins by spin-orbit coupling
Spin-injection Hall effect
VG
+
+ +
– –
+ +
– –
– –
+ +
– –
+ +
+ +
– –
Built-in electric fields in SC structure can be modified by external gate voltage
Hall signals changed by gate  transverse-voltage spintronic transistor
Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
h
h
h h h
h
e
VH
e
e
e
e
e
2DHG
2DEG
Optical spin-generation area near the p-n junction
Simulated band-profile
Vb
h
h
h h h
h
e
e
e
e
e
VL
e
VH2
2DHG
2DEG
p-n junction bulit-in potential (depletion length ) ~ 100 nm
 self-focusing of the generation area of counter-propagating e- and h+
Hall probes further than 1m from the p-n junction
 safely outside the spin-generation area and/or
masked Hall probes
Experimental observation of the SIHE
SIHE linear in degree of polarization and spatially varying
Spin dynamics in Rashba&Dresselhaus SO-couped 2DEG
H 2DEG
 2k 2

  k y x  k x y    k x x  k y y 
2m
 > 0,  = 0
 = 0,  < 0
k-dependent SO field  strong precession & spin-decoherence due to scattering
No decoherence for ||
= || & channel  SO field
L[110 ]  k[110 ]t / m
  4k[110 ]t / 
Bernevig et al PRL’06
[110]
[1-10]
Diffusive spin dynamics & Hall effect due to skew scattering


 2k 2
*
H 2DEG 
  k y x  k x y    k x x  k y y      (k   Vdis (r ))
2m
precession-length (~1m) >> mean-free-path (~10 nm)
 H ( x[1 1 0] )  2
*
pZ ( x[1 1 0] )  exp[q x[1 1 0] ]
~2~ 2 ~ 4
q | q | exp(i ) , | q |  ( L1 L2  L2 )1 4
 L~ 2 L~ 2  L~ 4 4 

  12 arctan ~1 2 2 ~ 2 1
 L L 2 
2
1


~
L1/ 2  2m |    | 2
e
n pz ( x[1 1 0] )
ni 
Conclusions
SIHE: high-T SO only spintronics in non-magnetic systems
 Basic studies of spin-charge dynamics and
Hall effect in non-magnetic systems with SO coupling
 Spin-photovoltaic cell: polarimeter on a SC chip requiring no magnetic elements,
external magnetic field, or bias; unconventional laser displacement sensor with the
resolution defined by the spin-precession length built in the SC
 SIHE can be tuned electrically by external gate and combined with electrical spininjection from a ferromagnet (e.g. Fe/Ga(Mn)As structures)
SIHE vs other spin-detection tools in semiconductors
Crooker et al. JAP’07, others
 Magneto-optical imaging
non-destructive
 lacks nano-scale resolution
and only an optical lab tool
 MR Ferromagnet
 electrical
 requires semiconductor/magnet
Ohno et al. Nature’99, others
hybrid design & B-field to orient
the FM
 spin-LED
 all-semiconductor
 requires further conversion of
emitted light to electrical
signal
 Spin-injection Hall effect
 non-destructive
 electrical
 100-10nm resolution with current lithography
 in situ directly along the SC channel
& all-SC requiring no magnetic elements in the structure or B-field