Transcript Slide 1

From ferromagnetic to non-magnetic semiconductor spintronics:
Spin-injection Hall effect
Tomas Jungwirth
Institute of Physics ASCR
Karel Výborný, Jan Zemen, Jan Mašek,
Vít Novák, Kamil Olejník, et al.
University of Nottingham
Bryan Gallagher, Richard Campion, Kevin
Edmonds, Andrew Rushforth, et al.
Hitachi Cambridge, Univ. Cambridge
Jorg Wunderlich, Andrew Irvine, Byonguk Park, et al.
Texas A&M
Jairo Sinova, et al.
AMR and GMR (TMR) sensors: dawn of spintronics
Inductive read elements
Magnetoresistive read elements
1980’s-1990’s
Ferromagnetism & spin-orbit coupling
 anisotropic magnetoresistance
~ 1% MR effect
Ferromagnetism only
 giant (tunnel) magnetoresistance
~ 100% MR effect
magnetization
current
Lord Kelvin 1857
Fert, Grunberg et al. 1988
Renewed interest in SO induced MRs in ferromagnetic semiconductors
~ 1000% MR effect & gate controlled
Ohno Science ’98
Coulomb blockade AMR: likely the most sensitive spintronic transistors to date
Wunderlich et al. PRL ’06
Schlapps et al. arXiv:0904.3225
Coulomb blockade oscillations in (Ga,MnAs) SET as
a function of gate voltage and magnetization angle
SO induced MRs: AMR & anomalous Hall effect
Ordinary Hall effect:
response in normal metals to external
magnetic field via classical Lorentz force
Anomalous Hal effect:
response to internal spin polarization in ferromagnets
via quantum-relativistic spin-orbit coupling
Hall 1879
Hall 1881
B
_
M
FL
__
I
I
V
FSO
V
Tc in (Ga,Mn)As upto ~190 K but AHE survives and dominates above room-T
Ruzmetov et al. PRB ’04
(Ga,Mn)As: simple band structure of the host SC
j=3/2
HH
HH & LH Fermi surfaces
Spherical HH Kohn-Luttinger 3D model 
Rashba and Dresselhaus 2D models
Intense theory research of AHE in model 2D R&D systems
Nagaosa et al RMP ‘’09 in press (arXiv:0904.4154)
Spin-injection Hall effect: SO-induced Hall effect of spin-polarized electrical
current injected into non-magnetic system (2DEG)
++++ ––––
––––
++++
Spin-polarizer
(e.g. ferromagnet,  light)
jqs
nonmagnetic
Wunderlich et al. Nature Phys.‘09
- spintronic effect in non-magnetic semiconductors based on SO only
 immediate prospect for high-T operation
- SO-induced Hall effect (like AHE) in the model 2D Rashba&Dresselhaus systems
- and more ….
- spin-detection tool of unique SO-induced spin dynamics effects in 2D systems
- directly applicable to a variety of opto-spintronic, spintronic transitor, etc. devices
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
ni
p
2DHG
9
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
-
ni
p
2DHG
10
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
p
i
n
2DHG
2DEG
11
Optical injection of spin-polarized charge currents into Hall bars
 GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell
h
h
h h h
h
e
VH
e
e
e
e
e
2DHG
2DEG
Optical spin-generation area near the p-n junction
Simulated band-profile
Vb
h
h
h h h
h
e
e
e
e
e
VL
e
VH2
2DHG
2DEG
p-n junction bulit-in potential (depletion length ) ~ 100 nm
 self-focusing of the generation area of counter-propagating e- and h+
Hall probes further than 1m from the p-n junction
 safely outside the spin-generation area and/or
masked Hall probes
Experimental observation of the SIHE
SIHE linear in degree of polarization and spatially varying
Spin dynamics in Rashba&Dresselhaus SO-couped 2DEG
H 2DEG
 2k 2

  k y x  k x y    k x x  k y y 
2m
 > 0,  = 0
 = 0,  < 0
k-dependent SO field  strong precession & spin-decoherence due to scattering
No decoherence for ||
= || & channel  SO field
L[110 ]  k[110 ]t / m
  4k[110 ]t / 
Bernevig et al PRL’06
[110]
[1-10]
Diffusive spin dynamics & Hall effect due to skew scattering


 2k 2
*
H 2DEG 
  k y x  k x y    k x x  k y y      (k   Vdis (r ))
2m
 H ( x[1 1 0] )  2
*
pZ ( x[1 1 0] )  exp[q x[1 1 0] ]
~2~ 2 ~ 4
q | q | exp(i ) , | q |  ( L1 L2  L2 )1 4
 L~ 2 L~ 2  L~ 4 4 

  12 arctan ~1 2 2 ~ 2 1
 L L 2 
2
1


~
L1/ 2  2m |    | 2
e
n pz ( x[1 1 0] )
ni 
SIHE vs other spin-detection tools in semiconductors
Crooker et al. JAP’07, others
 Magneto-optical imaging
non-destructive
 lacks nano-scale resolution
and only an optical lab tool
 MR Ferromagnet
 electrical
 requires semiconductor/magnet
Ohno et al. Nature’99, others
hybrid design & B-field to orient
the FM
 spin-LED
 all-semiconductor
 requires further conversion of
emitted light to electrical
signal
 Spin-injection Hall effect
 non-destructive
 electrical
 100-10nm resolution with current lithography
 in situ directly along the SC channel
& all-SC requiring no magnetic elements in the structure or B-field
Conclusions
SIHE: high-T SO only spintronics in non-magnetic systems
 Basic studies of spin-charge dynamics and
Hall effect in non-magnetic systems with SO coupling
 Spin-photovoltaic cell: polarimeter on a SC chip requiring no magnetic elements,
external magnetic field, or bias
 All-electric Datta-Das like transistor with Fe or (Ga,Mn)As spin-injectors,
top/bottom gate electrode, and SIHE detection