Слайд 1 - ФГБНУ НИИ РИНКЦЭ

Download Report

Transcript Слайд 1 - ФГБНУ НИИ РИНКЦЭ

Russian-French collaboration in the
development of layered nanostructures
for THz technology
G.N. Izmaïlov, O.A. Klimenko, Yu. A. Mityagin, V.N. Murzin
Outline of Presentation
The results of joint work with the Charles Coulomb
Laboratory of University of Montpellier 2, France were the
topic of my report "Russian-French cooperation in
the development of layered nanostructures for THz
technology ".
First of all, I need to explain the feasibility of works,
then talk about the physics of some phenomena that served
as the subject of research;
mention those involved in the development;
present the results of research;
make conclusions
2
Terahertz range
Where is THz radiation applicable
•THz radiation finds applications in astronomy in the analysis of the
chemical composition of stars and planets, in biology and medicine,
in security, where it is necessary to determine the chemical
composition of the material at a distance, without destroying it.
•A very popular application is the control of product quality. The
fact is that the presence of microcracks and microcavity distorts the
interference pattern, even if they are concealed in the depth of
material.
•Also is required the development of telecommunications in the next
five to seven years to move to the transfer of information to
Terahertz frequencies
•In general, such a large set of different applications provokes the
development of devices that are adapted precisely at Terahertz
frequency range.
3
Terahertz range
Terahertz radiation from the Sun
THz astronomy
4
Terahertz range
Telecommunication
Art history
& restoration
Detection of Hazardous Substances
MDMA
Aspirin
Methamphetamine
Production quality control
n = 0.3 – 10 THz = 10 – 333 sm-1
l = 30 µm – 1 mm
5
Двумерная электронная плазма
3D плазма:
 p ,3 D
4e2 n3D

m*
2D плазма:
p 
2e 2 n2 D k
m* k 
6
2-D electronic plasma
3D plasma:
 p ,3 D
4e2 n3D

m*
2D plasma:
p 
 p1
ε2
ε1
 p1 
4e 2 n2 D k
m*  1   2 
k
2e 2 n2 D k
m* k 
7
2-D electronic plasma
3D plasma:
 p ,3 D
4e2 n3D

m*
2D plasma:
p 
 p1
ε2
ε1
 p1 
4e 2 n2 D k
m*  1   2 
2e 2 n2 D k
m* k 
ε2
d
k
 p2
ε1
 p2 
2e 2 n2 D d
k
*
m 2
k
8
2-D electronic plasma
3D plasma:
 p ,3 D
4e2 n3D

m*
ε1
 p1 
2D plasma:
p 
 p1
ε2
4e 2 n2 D k
m*  1   2 
2e 2 n2 D k
m* k 
2D in a magnetic
field:
mp  c2   p2 k 
c  eB m
*
ε2
d
k
 p2
ε1
 p2 
2e 2 n2 D d
k
*
m 2
k
9
2D electron plasma in
the channel of FET transistor
Gate
Vg
Source
Drain
Channel
Typical dimensions of the transistor:
S
S
S
D
D
D
Distance drain-source ~ 1 micron
Gate length = 0.1 m
Beam shutter 10 - 100 microns
Pad size ~ 100 microns
The emission wavelength 100 - 1000 m
10
2D electron plasma in
the channel of FET transistor
Gate
Vg
Source
Drain
Канал
j AC  enAC µ  EAC , EAC  cost , nAC  cost 
j AC  cos2 t 
S
S
S
U  j AC
D
D
D
Typical dimensions of the transistor:
Distance drain-source ~ 1 micron
Gate length = 0.1 m
Beam shutter 10 - 100 microns
Pad size ~ 100 microns
The emission wavelength 100 - 1000 m
11
Dyakonov-Shur model
v
v
e U
v  
,
t
x
m x
ne ne v 

0
t
x
ne 
CU x 
, U  U G Ch x   U th ,
e
Boundary conditions:
1 U a2
U  U ( x  L)  U ( x  0) 
f ( )
4 U0
(assymetry!!)
U 0, t   U 0  U a cost ,
j L, t   0
M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993)
M. Dyakonov and M. Shur, IEEE Trans. El. Dev. 43, 380 (1996)
12
Dyakonov-Shur model
1 U a2
U 
f ( )
4 U0
Nonresonant detection
Conditions :
  1, L  s
or
 
  1, L  s 
 
И
С
1
2
И
С
f ( )  1 
2
1   2 2
Resonant detection
1
 s 
f ( )  4 
2 2
L


4


n

 
0  1
2
Conditions :
  1, s  L
И
С
0 
s
2L
~ 0.1  1 ТГц
M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993)
M. Dyakonov and M. Shur, IEEE Trans. El. Dev. 43, 380 (1996)
n  1, 3, 5, 7,...
13
The detection of THz
radiation by FET
W. Knap et al. JAP, 91, 9346 (2002)
14
History of innovation
In 2002y. W Knap (Montpellier, France) for the first time saw
the Terahertz FET photoresponse - it is what was predicted in
1993 by Dyakonov and Shur (St. Petersburg, Russia)
In the 2006y-9y papers, the resonance detection regime has been
studied in more details. It was seen that the resonance peak
becomes more pronounced with decreasing temperature, i.e. a
decrease of the lenght of plasma waves. The peak position varies
with the radiation frequency, as was predicted by Dyakonov-Shur
theory. However, the experimentally obtained peak figure of merit
is much lower than the calculated value.
Key results were obtained in 2009y.
The influence of a magnetic field on a photoresponse has been
studied in 2009- 2011yy.
15
Terahertz reseaches
Experiment
W. КNAP
F. ТЕPP
D. КОКIIYA
Н.В. ДЬЯКОНОВА
Theory
М. И. ДЬЯКОНОВ
М. Б. ЛИФШИЦ
16
Terahertz radiation Emission and
Detection Laboratory(Montpellier)
Facilities
• Fourier
spectrometer Brucker FX66S. frequency range
0,3-200 THz (10-6000 cm-1).
• Cryostat with a superconducting magnet. The magnetic field
up to 16 T, the temperature of the sample to 2-300 K.
• Backward wave oscillator.
• Molecular CH3OH laser pumped by CO2. The frequency of
radiation
2.5 THz.
• Si bolometer. Sensitivity 2x10-13 W/Hz0.5. Compatible with
the Fourier spectrometer.
• The quantum cascade laser. The frequency of radiation
3.76 THz .
• Gunn diode. The frequency of radiation 0.3 THz
17
The investigated transistors
Type
Mobility
at 300 K,
cm2 / V · s
Mass of an
electron in a
channel
Channel
length, μm
Gate length,
μm
GaN/AlGaN
HEMT
1500
0,2 me
3,9
0,25
GaAs/AlGaAs
HEMT
8500
0,067 me
5
0,15
Si
MOSFET
CMOS
100
0,19 me
0,13
0,13
Si
SOI
660
0,19 me
10
10
InAlAs/InGaAs
HEMT
11500
0.049 me
2,6
0,8
Material
18
18
Publication on the work
1.
O.A. Klimenko et al., Terahertz Response of InGaAs Field Effect Transistors in
Quantizing Magnetic Fields // Appl. Phys. Lett., 2010, V. 97, P. 0022111
2.
W. Knap et al., Plasma excitations in field effect transistors for terahertz detection and
emission // C.R.Physique, 2010, V. 11, Issues 7-8, P. 433-443
3.
M. Sakowicz et al., Terahertz responsivity of field effect transistors versus their static
channel conductivity and loading effects // J. Appl. Phys., 2011, V.110, P.054512
4.
C. Drexler et al., Helicity sensitive terahertz radiation detection by field effect
transistors // J. Appl. Phys., 2012, V.114, P.124504
5.
O. A. Klimenko et al., Temperature enhancement of terahertz responsivity of plasma
field effect transistors // J. Appl. Phys., 2012, V.112, P.014506
Grant of the President of the Russian Federation № 14.122.13-4848 МК for the
support of young Russian scientists and leading scientific schools : «Study of the
interaction of electromagnetic Terahertz radiation with two-dimensional electron
gas in GaAs / GaAlAs and InAlAs / InGaAs HEMT structures with a view to develop
a new type of fast matrix detectors».
19
The results ofthe collaboration
The relations between characteristics of the channel field-effect transistor with
photo response are established, which are important for a more complete
understanding of the processes in the channel, where the generation of THz
radiation is occurred, and for the further development of the theory. Experimental
confirmations of the theoretical conclusions were performed at various
temperatures from room temperature to liquid helium. The theoretical description
of the generation processes now includes the presence of a magnetic field cases.
Experimental studies of the photo response of FETs in a magnetic field, as
directed by a more detailed study of the phenomenon, confirmed a new
theoretical model. The detecting elements is obtained that can be used as a basis
for the development of next-generation units of compact and changing the
generating wavelength.
Prototypes of devices (laboratory samples) to work in the THz range are
created.
As a result of research collaboration we note the strengthened scientific
communications between different groups and different schools of the EU and
20
Russia
Thanks
Thanks
for your attention
План доклада
I. Высокочастотные свойства 2D электронной плазмы
II. Детектирование ТГц излучения 2D электронной плазмой
в канале полевого транзистора
III. Связь нерезонансного фотоотклика и проводимости
канала полевого транзистора
IV. Влияние магнитного поля на эффект детектирования ТГц
излучения 2D электронной плазмой в канале полевого
транзистора
V. Выводы
Работа
проводилась
совместно
с
Лабораторией им. Шарля Кулона университета
Монпелье 2, Франция.
22
Двумерная электронная плазма
P ~ k
•Холловские структуры
•Область канала полевого
транзистора вне затвора
P  sk
s
4e2n2 D d
m*
n2 D  f Vg 
•Область канала полевого
транзистора под затвором
В существующих транзисторах:
n2D ~1012 см-2, d ~10 нм, vdr ~107 см/с, s ~108 см/с, fp ~1 ТГц
23
The detection of THz
radiation by FET
Ширина линии = 1/
P , 0 
s
2L


e(Vg  Vth )
2L
m*
A. El Fatimy et al. APL, 89, 131926 (2006)
µ = 36 000 см2/В·с
 ~ 3
 ~ 13
Ширина резонанса больше, чем в теории
24
The detection of THz
radiation by FET
Теория Дьяконова-Шура
L = 400 нм
f = 0.54 TГц
Wgr = 300 нм
L
Только продольные моды
• W/L ~ 100
• шероховатости на границах
D
y
W
Photoresponse (arb. Units)
Экспериментальная геометрия
S
W = 200 нм
InGaAs/InAlAs HEMT
4
A B
C
D
3
Quality Factor
w
D
S
Многоканальные транзисторы
8
6
4
2
15 30 45 60
Temperature (K)
2
10 K
1
60 K
-0,4
35 K
25 K
15 K
-0,3
-0,2
Gate voltage (V)
x
L
Все моды возможны
S. Boubanga-Tombet et al. APL, 92, 212101, (2008)
A. Shchepetov et al. APL, 92, 242105, (2008)
25
Results. GaN HEMT
Photoresponse (mV)
60
эксперимент
расчет
50
(4)
-4
40
30
(1) T = 275K, A = 1.2910 V²
-4
(2) T = 175K, A = 1.8310 V²
-4
(3) T = 75K, A = 3.9610 V²
-4
detection
(4) T = 5K, AThe
= 8.55
10 V² of THz
radiation by FET
20
(3)
10
0
-5.6
GaN
(2)
(1)
-5.4
-5.2
-5.0
Vg (V)
-4.8
-4.6
26
Detection in a magnetic field.
Lifshitz-Dyakonov model
Lorentz force


v  
e 
e 
 v  v   U  Bv  v ,
t
m
m

U
 div Uv   0
t
 
Bz
Conductivity oscillation
 1 
   xx
Boundary conditions:
U 0, t   U 0  U a cost при x  0

при x  
v  0, U  U0
M. B. Lifshits and M. I. Dyakonov, Phys. Rev. B 80, 121304(R) (2009)
27