Yr7-Anglesx (Slides)

Download Report

Transcript Yr7-Anglesx (Slides)

Year 7 Angles
Dr J Frost ([email protected])
www.drfrostmaths.com
Objectives: Understand notation for angles. Know basic rules of angles
(angles in triangle, on straight line). Recognise alternate, corresponding
and vertically opposite angles. Find angles in isosceles triangles.
Deal with and introduce algebraic angles. Construct diagrams from
written information and form angle proofs.
Last modified: 7th February 2016
For Teacher Use:
Recommended lesson structure:
Lesson 1: Angle notation. Angle basics.
Lesson 2: Z/F/C/v. opposite angles. Angle properties of quadrilaterals.
Lesson 3: Isosceles Triangles
Lesson 4: Algebraic Angles
Lesson 5/6: Constructing diagrams from information. Proof
Lesson 7: Consolidation/Mini-assessment
Angle Notation
๐ด
๐ต
We use capital letters for points.
๐ถ
! We can refer to this angle using:
โ€ข ๐ด๐ต๐ถ (with a โ€˜hatโ€™ on the
? middle letter)
โ€ข โˆ ๐ด๐ต๐ถ
?
โ€ข Or in words: โ€œAngle?๐ด๐ต๐ถโ€
Quick Starter: How would we refer to each of the following angles?
(Use โˆ ๐ด๐ต๐ถ notation)
๐‘„
1
๐‘ƒ
3
๐ถ
2
๐‘†
๐‘…
1
โˆ ๐‘†๐‘„๐‘… or? โˆ ๐ถ๐‘„๐‘…
2
โˆ ๐‘†๐ถ๐‘… ?
3
โˆ ๐‘†๐‘ƒ๐‘„ ?
Angle Basics
30°
128°
๐Ÿ“๐Ÿ°?
! โ€œAngles on a straight line
? sum to 180°.โ€
๐Ÿ๐Ÿ’๐ŸŽ°
?
(These wordings will be important for angle proofs later)
! โ€œAngles around a point
? sum to 360°.โ€
85°
๐Ÿ’๐Ÿ“°
?
50°
! โ€œAngles in a triangle?sum to 180°.โ€
reflex
acute
obtuse
Name of angle if:
Less than 90:
Acute
?
Between 90 and 180: Obtuse
?
Over 180:
Reflex?angle
Test Your Understanding
i
[JMC 2008 Q4] In this diagram, what
is the value of ๐‘ฅ?
A 16
B 36
C 64
D 100 E 144
Solution: C ?
ii
[JMC 2003 Q12] What is the size of
the angle marked ๐‘ฅ?
A 42°
B 67°
C 69°
D 71°
E 111°
Solution: A ?
Exercise 1
1
(on provided worksheet)
Find the angles marked with letters.
71°
๐‘
๐‘Ž
45°
๐‘
150°
๐‘
๐‘
105°
๐‘‘
๐‘’
52°
60°
110°
๐’‚ = ๐Ÿ”๐Ÿ’°,
?
? ๐’ƒ = ๐Ÿ•๐ŸŽ°,
? ๐’„ = ๐Ÿ”๐ŸŽ°,
? ๐’… = ๐Ÿ๐Ÿ๐Ÿ°,
? ๐’† = ๐Ÿ‘๐Ÿ“°
30°
Exercise 1
(on provided worksheet)
2
[JMC 2000 Q3] What is the value of ๐‘ฅ?
Solution: 28
3
[JMC 2015 Q6] What is the value of ๐‘ฅ in
this triangle?
Solution: 50
?
?
4
[JMC 2011 Q6] What is the sum of the
marked angles in the diagram?
Solution: ๐Ÿ‘๐Ÿ”๐ŸŽ°
?
5
[JMC 1997 Q17] How big is angle ๐‘ฅ?
Solution: ๐Ÿ๐ŸŽ๐Ÿ’°
?
6
[IMC 2014 Q3] An equilateral triangle is
placed inside a larger equilateral triangle
so that the diagram has three lines of
symmetry. What is the value of ๐‘ฅ?
Solution: ๐Ÿ๐Ÿ“๐ŸŽ°
?
7
[IMC 2011 Q9] In the diagram, ๐‘‹๐‘Œ is a
straight line. What is the value of ๐‘ฅ?
Solution: 170
?
Exercise 1
8
(on provided worksheet)
[JMC 2010 Q8] In a triangle with angles ๐‘ฅ°, ๐‘ฆ°, ๐‘ง° the
mean of ๐‘ฆ and ๐‘ง is ๐‘ฅ. What is the value of ๐‘ฅ?
Solution: 60
?
9
[JMC 1999 Q13] In the diagram, โˆ ๐‘…๐‘ƒ๐‘€ = 20° and
โˆ ๐‘„๐‘€๐‘ƒ = 70°. What is โˆ ๐‘ƒ๐‘…๐‘†?
Solution: ๐Ÿ๐Ÿ‘๐ŸŽ°
?
10
[JMC 2001 Q18] Triangle ๐‘ƒ๐‘„๐‘… is equilateral. Angle
๐‘†๐‘ƒ๐‘… = 40°, angle ๐‘‡๐‘„๐‘… = 35°. What is the size of
the marked angle ๐‘†๐‘‹๐‘‡?
Solution: ๐Ÿ๐Ÿ‘๐Ÿ“°
?
11
[JMC 2007 Q16] What is the sum of the six marked
angles?
Solution: ๐Ÿ๐Ÿ’๐Ÿ’๐ŸŽ°. The sum of the angles at the 7
points is ๐Ÿ“ × ๐Ÿ‘๐Ÿ”๐ŸŽ = ๐Ÿ๐Ÿ–๐ŸŽ๐ŸŽ. Weโ€™ve excluded the
angles in the 3 triangles, so ๐Ÿ๐Ÿ–๐ŸŽ๐ŸŽ โˆ’ ๐Ÿ‘ × ๐Ÿ๐Ÿ–๐ŸŽ =
๐Ÿ๐Ÿ’๐Ÿ’๐ŸŽ.
?
12
[JMC 2015 Q16] The diagram shows a square inside
an equilateral triangle. What is the value of ๐‘ฅ + ๐‘ฆ?
Solution: 150
?
Exercise 1
13
(on provided worksheet)
[JMO 2001 A3] What is the value of ๐‘ฅ in the diagram alongside?
Solution: 15
?
14
[Kangaroo Pink 2010 Q9] In the diagram, angle ๐‘ƒ๐‘„๐‘… is 20°, and the reflex
angle at ๐‘ƒ is 330°.The line segments ๐‘„๐‘‡ and ๐‘†๐‘ˆ are perpendicular. What
is the size of angle ๐‘…๐‘†๐‘ƒ?
Solution: ๐Ÿ’๐ŸŽ°
?
15
[Kangaroo Pink 2006 Q8] The circle shown in the diagram is divided into
four arcs of length 2, 5, 6 and ๐‘ฅ units. The sector with arc length 2 has an
angle of 30° at the centre. Determine the value of ๐‘ฅ.
(Hint: An arc is a part of the line that makes up the circle, i.e. part of the
circumference. The arc length grows in proportion to the angle at the
centre)
Solution: 11
?
16
[SMC 2010 Q3] The diagram shows an equilateral triangle touching two
straight lines. What is the sum of the four marked angles?
Solution: ๐Ÿ๐Ÿ’๐ŸŽ°. Angles at two points some to ๐Ÿ‘๐Ÿ”๐ŸŽ°, but we exclude two
angles of ๐Ÿ”๐ŸŽ°.
?
Angles involving parallel lines
There are three more laws of angles that you need to know, use and quote:
(These arrows indicate the
lines are parallel)
! Alternate angles are equal.
? as โ€˜Zโ€™ angles)
(Sometimes known
! Corresponding angles are equal.
? as โ€˜Fโ€™ angles)
(Sometimes known
! Vertically opposite angles
? are equal.
Bro Note: The word โ€˜verticallyโ€™ here is the adjective
form of โ€˜vertexโ€™, which means a point. So โ€œvertically
oppositeโ€ means โ€œopposite with respect to a pointโ€.
How to spot them
To identify alternate angles:
Step 1: Identify a line connecting
two parallel lines.
Click >>
Step 2: At each end on your parallel
lines, shoot out along the parallel lines
in opposite directions. Your angles are
the ones wedged between the lines.
Click >>
To identify corresponding angles:
Step 1: Identify an angle between one line
of a parallel pair, and a connecting line.
Click >>
Step 2: This can be shifted along to the
other parallel line of the pair.
Click >>
Examples
(For extra practise outside of class)
Identify the alternate and corresponding angle for each indicated angle (use โˆ  notation).
๐‘ƒ
๐‘Š
๐‘‹
๐ด
๐‘„
๐ท
๐ถ
๐ต
๐‘†
๐ธ
๐บ 5
4
๐น
2
๐ป
Double arrows allows us to match
another pair of parallel lines.
3
๐ฝ
๐ผ
๐พ
1
๐‘
๐‘€
๐ฟ
๐‘‡
๐‘…
๐‘ˆ
๐‘‰
๐‘‚
#
Angle
Alternate
Corresponding
1
โˆ ๐ฝ๐‘๐‘‚
โˆ ๐‘ƒ๐ท๐‘„ or โˆ ๐บ๐ฟ๐‘€
2
?
โˆ DJC
?
โˆ ๐ผ๐ถ๐ท
?
โˆ ๐ป๐บ๐ฟ
?
?
โˆ ๐น๐‘€๐‘
?
โˆ BAC
?
โˆ ๐‘‡๐‘‰๐ผ
?
โˆ ๐ท๐ฝ๐ผ
?
3
4
5
โˆ ๐‘†๐น๐ป
โˆ ๐ถ๐ท๐ฝ
?
โˆ ๐ฟ๐‘€๐‘…
?
โˆ ๐‘Š๐ด๐‘‹
?
โˆ ๐‘ˆ๐ฟ๐‘€
?
โˆ ๐‘๐ฝ๐พ
?
Check Your Understanding
ANB is parallel to CMD. LNM is a straight line.
Angle LMD = 68°
(i) Work out the size of the angle marked ๐‘ฆ.
๐Ÿ๐Ÿ๐Ÿ°
?
(ii) Give reasons for your answer.
โ€œAlternate angles are equalโ€ OR โ€œCorresponding angles
? line sum to 180โ€
are equalโ€, โ€œAngles on straight
i
ii
[JMC 2011 Q11] The diagram shows an
equilateral triangle inside a rectangle. What is
the value of ๐‘ฅ + ๐‘ฆ?
A 30
B 45
C 60
D 75
E 90
๐‘ฆ
๐‘ฅ
Solution:?C
Bro Hint: Is there a line in the
diagram we could add so we
can then use alternate angles?
Cointerior angles
Weโ€™ve seen โ€˜Zโ€™ and โ€˜Fโ€™ angles. Thereโ€™s also โ€˜Cโ€™ angles!
! Cointerior angles sum to?๐Ÿ๐Ÿ–๐ŸŽ°
180 โˆ’ ๐‘ฅ
?
๐‘ฅ
We can identify them in a similar way
to alternate angles: identify a line
connecting two parallel lines, but this
time go in the same direction at each
end rather than opposite directions.
Application to parallelograms
So we can say:
110°
?
70°
?70°
! Cointerior angles in a parallelogram
add to?๐Ÿ๐Ÿ–๐ŸŽ°
! Opposite angles in a parallelogram
are equal.
?
Example
Can you come up with an alternative explanation
for why ๐‘ฆ = 112°?
โˆ ๐‘ด๐‘ต๐‘ฉ = ๐Ÿ๐Ÿ๐Ÿ° (cointerior angles sum to 180)
๐’š = ๐Ÿ๐Ÿ๐Ÿ° (vertically opposite
? angles are equal)
One further property of quadrilaterals
What are the sum of the
angles in a quadrilateral?
Draw Hint >>
! Angles in a quadrilateral sum to ๐Ÿ‘๐Ÿ”๐ŸŽ°
?
50°
๐‘ฅ
35°
45°
?
๐‘ฅ = ๐Ÿ๐Ÿ‘๐ŸŽ°
Exercise 2
1
a
(on provided worksheet)
For each diagram
(i) Find the missing angles and
(ii) List reasons for each answer.
i) ๐Ÿ“๐Ÿ“°
?
ii) Corresponding
? equal.
angles are
b
? ๐Ÿ—๐Ÿ“°
i) ๐’™ = ๐Ÿ๐Ÿ“๐ŸŽ°, ๐’š =
ii) For x: Corresponding angles
are equal.
For y: Angles on
straight line
?
add to 180. Alternate angles
are equal.
Exercise 2
2
b
a
๐‘ฆ
๐‘ฅ
115°
122°
80°
๐’™ = ๐Ÿ“๐Ÿ–°?
๐’š = ๐Ÿ‘๐Ÿ“°
?
c
30°
d
๐‘
57°
๐‘ฅ
๐‘Ž
๐‘
82°
๐’‚ = ๐Ÿ‘๐ŸŽ°, ๐’ƒ =?๐Ÿ–๐Ÿ°, ๐’„ = ๐Ÿ”๐Ÿ–°
41°
๐’™ = ๐Ÿ•๐Ÿ’°
?
Exercise 2
f
e
85°
110°
๐‘ฅ
112°
75°
๐‘ฆ
?
๐’™ = ๐Ÿ”๐Ÿ–°
๐’™ = ๐Ÿ—๐ŸŽ°
?
Exercise 2
3
For rhombuses are evenly
spaced around a point.
Given the angle shown,
find ๐‘ฅ.
Solution: ๐Ÿ๐Ÿ๐ŸŽ°
?
30°
๐‘ฅ
Exercise 2
4
Find the angles indicated.
100°
41°
๐‘
๐‘
๐‘Ž
๐‘‘
๐‘’
96°
136°
๐’‚ = ๐Ÿ’๐Ÿ°?
๐’ƒ = ๐Ÿ—๐Ÿ”°?
๐’„ = ๐Ÿ๐Ÿ‘๐Ÿ”°
?
๐’… = ๐Ÿ–๐Ÿ’°?
๐’† = ๐Ÿ—๐Ÿ“° ?
Exercise 2
5
42°
Find the angle ๐›ผ
Solution: ๐Ÿ•๐Ÿ°
๐›ผ
?
29°
๐ท
6
๐‘ƒ
๐ถ
The line ๐‘ƒ๐ต bisects the angle ๐ด๐ต๐ถ
(this means it cuts it exactly in half).
Determine the angle ๐ต๐‘ƒ๐ถ.
Solution: ๐Ÿ“๐Ÿ“° ?
70°
๐ด
๐ต
Exercise 2
7
[JMC 2006 Q7] What is the value of ๐‘ฅ?
Solution: ๐Ÿ•๐Ÿ“°
?
8
[JMC 2007 Q9] In the diagram on the right, ๐‘†๐‘‡ is
parallel to ๐‘ˆ๐‘‰. What is the value of ๐‘ฅ?
Solution: 86
?
9
[JMC 2009 Q19] The diagram on the right shows a
rhombus ๐น๐บ๐ป๐ผ and an isosceles triangle ๐น๐บ๐ฝ in which
๐บ๐น = ๐บ๐ฝ. Angle ๐น๐ฝ๐ผ = 111°. What is the size of angle
๐ฝ๐น๐ผ?
Solution: ๐Ÿ๐Ÿ•°
?
10
[IMC 2005 Q7] In the diagram, what is the sum of the
marked angles?
Solution: ๐Ÿ‘๐Ÿ”๐ŸŽ°. Sum of angles in 4 triangles is ๐Ÿ๐Ÿ–๐ŸŽ° ×
๐Ÿ’ = ๐Ÿ•๐Ÿ๐ŸŽ°. The four angles in the quadrilateral sum to
360, thus because of vertically
? opposite angles, the
innermost angles of the triangles sum to 360. Thus
sum of angles is ๐Ÿ•๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘๐Ÿ”๐ŸŽ = ๐Ÿ‘๐Ÿ”๐ŸŽ°.
Exercise 2
11
[JMO 2003 A9] Find the value of ๐‘Ž + ๐‘ + ๐‘.
Solution: 210
?
12
[SMC 2006 Q3] The diagram shows
overlapping squares. What is the value of ๐‘ฅ +
๐‘ฆ?
Solution: 270
?
13
[Cayley 2012 Q2] In the diagram, ๐‘ƒ๐‘„ and ๐‘‡๐‘†
are parallel. Prove that ๐‘Ž + ๐‘ + ๐‘ = 360.
Suppose we add a line horizontal with ๐‘น as
shown, where ๐’ƒ is split into ๐’ƒ๐Ÿ and ๐’ƒ๐Ÿ .
๐’‚ and ๐’ƒ๐Ÿ are cointerior thus ๐’‚ + ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ–๐ŸŽ°.
๐’ƒ๐Ÿ and ๐’„ are cointerior thus ๐’ƒ๐Ÿ + ๐’„ = ๐Ÿ๐Ÿ–๐ŸŽ°
?
Thus
๐’‚ + ๐’ƒ + ๐’„ = ๐’‚ + ๐’ƒ๐Ÿ + ๐’ƒ๐Ÿ + ๐’„
= ๐Ÿ๐Ÿ–๐ŸŽ° + ๐Ÿ๐Ÿ–๐ŸŽ° = ๐Ÿ‘๐Ÿ”๐ŸŽ°
๐’š
๐’ƒ๐Ÿ
๐’ƒ๐Ÿ
Exercise 2
14
[Kangaroo Grey 2005 Q20] Five straight lines intersect at a common point
and five triangles are constructed as shown. What is the total of the 10
angles marked in the diagram?
A 300° B 450° C 360° D 600° E 720°
Answer: ๐Ÿ•๐Ÿ๐ŸŽ°. Sum of angles in 5 triangles is ๐Ÿ๐Ÿ–๐ŸŽ° × ๐Ÿ“ = ๐Ÿ—๐ŸŽ๐ŸŽ°.
Since angles at the central point add to ๐Ÿ‘๐Ÿ”๐ŸŽ°, but each angle in a triangle at the
centre can be paired with a vertically opposite angle not in a triangle, the central
angles in the triangles sum to ๐Ÿ๐Ÿ–๐ŸŽ°. ๐Ÿ—๐ŸŽ๐ŸŽ° โˆ’ ๐Ÿ๐Ÿ–๐ŸŽ° = ๐Ÿ•๐Ÿ๐ŸŽ°
?
Isosceles Triangles
What do these marks mean?
The lines are of the
? same length.
๐Ÿ’๐ŸŽ°
?
๐Ÿ”๐Ÿ“°
?
50°
70°
?
๐Ÿ•๐ŸŽ°
! โ€œBase angles of an
isosceles triangle are equal.โ€
Warning!
Sometimes diagrams are drawn in such a way that itโ€™s not visually obvious what the
two angles the same are. You can use the โ€˜finger slide methodโ€™ to identify these.
Diagram not
drawn accurately.
Click for
Broanimation >
Put your fingers on the two
marks.
Slide your fingers in the same
direction but away from each
other.
These two corners are where
the angles are the same.
Test Your Understanding
i
[JMC 2013 Q3] What is the value of ๐‘ฅ?
A 25
B 35
C 40
D 65
E 155
Solution: C
?
ii
[IMC 2012 Q11] In the diagram, ๐‘ƒ๐‘„๐‘…๐‘† is a parallelogram;
โˆ ๐‘„๐‘…๐‘† = 50°; โˆ ๐‘†๐‘ƒ๐‘‡ = 62° and ๐‘ƒ๐‘„ = ๐‘ƒ๐‘‡. What is the size
of โˆ ๐‘‡๐‘„๐‘…?
A 84° B 90° C 96° D 112° E 124°
Solution:
?C
Using angles to give you information about sides
Youโ€™ve so far used sides which are equal to find angles.
But we can do the opposite too! If two angles are equal, then two sides are equal.
[Kangaroo Pink 2004 Q6] In
the diagram ๐‘„๐‘… = ๐‘ƒ๐‘†.
What is the size of โˆ ๐‘ƒ๐‘†๐‘…?
75°
65°
1. Use information provided.
2. Work out some initial angles.
3. Use angles to give us
information about side lengths.
4. Use new knowledge of side
lengths to work out more
anglesโ€ฆ
Go >
Go >
Go >
Go >
Angle Wall Challenge
How far can you get down the angle challenge
wall? (do in order, and draw the diagram first)
Hint: You may want to add extra lines.
๐Ÿ”๐ŸŽ°
60°
๐Ÿ‘๐ŸŽ°
๐Ÿ
๐Ÿ•๐Ÿ“°
๐Ÿ’๐Ÿ“°
๐Ÿ‘๐ŸŽ°
๏‹
๐Ÿ”๐ŸŽ°
๐Ÿ•๐Ÿ“°
?
โˆ ๐ท๐ด๐ถ = 30°
?
โˆ ๐ด๐ท๐ต = 45° (ฮ”๐ด๐ท๐ถ is?isosceles)
โˆ ๐ด๐ท๐ถ = 75° (ฮ”๐ด๐ท๐ถ is?isosceles)
โˆ ๐ต๐ท๐ถ = 30° (75° โˆ’ 45°)
?
โˆ ๐ท๐ต๐ถ = 15° (angles within
? ฮ”๐ท๐ถ๐ต)
๏Š โˆ ๐ต๐ด๐ถ = 60°
๐Ÿ๐Ÿ“°
๏Œ
This was a Junior Maths Olympiad problem!
(to prove that โˆ ๐ต๐ท๐ถ = 2 × โˆ ๐ท๐ต๐ถ)
Exercise 3
1
(on provided worksheet)
Find the value of each variable.
Solution: ๐’™ = ๐Ÿ’๐Ÿ”°, ๐’š = ๐Ÿ•๐Ÿ’°, ๐’› = ๐Ÿ๐ŸŽ°
?
2
[JMC 2014 Q10] An equilateral triangle is
surrounded by three squares, as shown. What is
the value of ๐‘ฅ?
Solution: 30
?
3
[JMC 2005 Q13] The diagram shows two equal
squares. What is the value of ๐‘ฅ?
Solution: 140
?
4
[IMC 2010 Q6] In triangle ๐‘ƒ๐‘„๐‘…, ๐‘† is a point on
๐‘„๐‘… such that
๐‘„๐‘† = ๐‘†๐‘ƒ = ๐‘ƒ๐‘… and โˆ ๐‘„๐‘ƒ๐‘† = 20°. What is the
size of โˆ ๐‘ƒ๐‘…๐‘†?
Solution: ๐Ÿ’๐ŸŽ°
?
5
[IMC 1999 Q8] In the diagram ๐‘ƒ๐‘„ = ๐‘ƒ๐‘… = ๐‘…๐‘†.
What is the size of angle ๐‘ฅ?
Solution: ๐Ÿ๐ŸŽ๐Ÿ–°
?
Exercise 3
(on provided worksheet)
6 [JMC 2008 Q19] In the diagram on the right, ๐‘ƒ๐‘‡ = ๐‘„๐‘‡ = ๐‘‡๐‘†,
๐‘„๐‘† = ๐‘†๐‘…, โˆ ๐‘ƒ๐‘„๐‘‡ = 20°. What is the value of ๐‘ฅ?
Solution: 35
?
7 [Kangaroo Grey 2010 Q9] The diagram shows a quadrilateral
๐ด๐ต๐ถ๐ท, in which ๐ด๐ท = ๐ต๐ถ, โˆ ๐ถ๐ด๐ท = 50°, โˆ ๐ด๐ถ๐ท = 65° and
โˆ ๐ด๐ถ๐ต = 70°. What is the size of โˆ ๐ด๐ต๐ถ?
Solution: ๐Ÿ“๐Ÿ“°
?
8 [Cayley 2004 Q1] The โ€œstarโ€ octagon shown in the diagram is
beautifully symmetrical and the centre of the star is at the
centre of the circle. If angle ๐‘๐ด๐ธ = 110° (as indicated), how big
is the angle ๐ท๐‘๐ด? (i.e. ๐‘ฅ)
Solution: ๐Ÿ๐ŸŽ°
?
9 [IMC 2003 Q8] Lines ๐ด๐ต and ๐ถ๐ท are parallel and ๐ต๐ถ = ๐ต๐ท.
Given that ๐‘ฅ is an acute angle not equal to 60°, how many
other angles in this diagram are equal to ๐‘ฅ?
Solution: 4
?
10 [IMC 1997 Q11] In the quadrilateral ๐ด๐ต๐ถ๐ท, โˆ ๐ด๐ต๐ถ = 90°,
โˆ ๐ต๐ด๐ท = 70°, and ๐ด๐ต = ๐ต๐ท = ๐ต๐ถ. What is the size of โˆ ๐ต๐ท๐ถ?
Solution: ๐Ÿ”๐Ÿ“°
?
๐‘
๐‘ฅ
๐‘Š
๐ท
๐ด
๐ถ
๐ต
๐‘†
110°
๐ธ
Exercise 3
11
(on provided worksheet)
[Kangaroo Pink 2013 Q9] The diagram shows an
equilateral triangle ๐‘…๐‘†๐‘‡ and also the triangle ๐‘‡๐‘ˆ๐‘‰
obtained by rotating triangle ๐‘…๐‘†๐‘‡ about the point ๐‘‡.
Angle ๐‘…๐‘‡๐‘‰ = 70°. What is angle ๐‘…๐‘†๐‘‰?
Solution: ๐Ÿ‘๐Ÿ“°
?
12
[IMC 2000 Q8] In the triangle ๐ด๐ต๐ถ, ๐ด๐ท = ๐ต๐ท = ๐ถ๐ท.
What is the size of angle ๐ต๐ด๐ถ?
Solution: ๐Ÿ—๐ŸŽ° ?
13 In the diagram ๐ด๐ต is parallel to ๐ถ๐ท and ๐ด๐ธ = ๐ด๐ถ.
Determine โˆ ๐ถ๐ด๐ธ.
๐ด
๐ต
30°
Solution: ๐Ÿ๐Ÿ° ?
๐ธ
54°
๐ถ
๐ท
Exercise 3
14
(on provided worksheet)
[TMC Regional 2008 Q9] If ๐ด๐ต = ๐ต๐ถ = ๐ถ๐ท =
๐ท๐ธ = ๐ธ๐น and angle ๐ด๐ธ๐น = 75°, what is the
size of angle ๐ธ๐ด๐น?
Solution: ๐Ÿ๐Ÿ°
?
STARTER : Algebraic Angles
What are the angles in each case, in terms of the variables given?
(Hint: Just think what youโ€™d do usually โ€“ itโ€™s no different here!)
i
180?โˆ’ ๐‘ฅ
๐‘ฅ
ii
iii
90 ?โˆ’ ๐‘ฆ
๐‘ฆ
๐‘ง
180 โˆ’?2๐‘ง
!
Overview
There are two types of problems youโ€™ll have which involve algebraic angles:
1. Angles given
โ€ฆand you have to find an
expression for a given angle.
Example:
2. No angles given
โ€ฆand you have to introduce variables
yourself, either so that you can prove
two angles have some relationship, or
so you can form an equation and
hence find an angle.
Example:
Given that ๐ด๐ต = ๐ด๐ถ and ๐‘ง < 90, which of
the following expressions must equal ๐‘ง?
A ๐‘ฅโˆ’๐‘ฆ
B ๐‘ฅ+๐‘ฆ
C ๐‘ฅ + ๐‘ฆ โˆ’ 180
D 180 + ๐‘ฅ โˆ’ ๐‘ฆ
E 180 โˆ’ ๐‘ฅ + ๐‘ฆ
[JMO 2010 A10] In the diagram, ๐ฝ๐พ and ๐‘€๐ฟ are
parallel. ๐ฝ๐พ = ๐พ๐‘‚ = ๐‘‚๐ฝ = ๐‘‚๐‘€ and ๐ฟ๐‘€ = ๐ฟ๐‘‚ =
๐ฟ๐พ. Find the size of angle ๐ฝ๐‘€๐‘‚.
Finding remaining angle in triangle/on line
Angle 1
Angle 2
?
If Angle 1 is 90 + ๐‘ฅ, what is
angle 2?
180 โˆ’ ?90 + ๐‘ฅ
(Expand
brackets)
= 180? โˆ’
90 โˆ’
๐‘ฅ
= 90 โˆ’ ๐‘ฅ? (Simplify)
Bro Tip: An easier way to do the
subtraction is to think what we
have to do to 90 + ๐‘ฅ to get to
180. Adding 90 gets us from 90
to 180, and subtracting ๐‘ฅ
cancels out the ๐‘ฅ.
Quickfire Questions:
Angle 1
Angle 2
๐‘ฅ
180?โˆ’ ๐‘ฅ
๐‘ฅ + 20
160?โˆ’ ๐‘ฅ
๐‘ฅ โˆ’ 10
190?โˆ’ ๐‘ฅ
2๐‘ฅ + 60
120?โˆ’ 2๐‘ฅ
๐‘ฅโˆ’๐‘ฆ
180 โˆ’?๐‘ฅ + ๐‘ฆ
180 โˆ’ 2๐‘ฅ
2๐‘ฅ
?
160 โˆ’ ๐‘ฅ
20?+ ๐‘ฅ
Finding remaining angle in triangle/on line
Angle 2
Angle 1
?
Angle 1
Angle 2
Remaining
๐‘ฅ
๐‘ฅ
180?โˆ’ 2๐‘ฅ
๐‘ฅ + 20
๐‘ฅ + 50
110?โˆ’ 2๐‘ฅ
2๐‘ฅ
90 โˆ’ ๐‘ฅ
90?โˆ’ ๐‘ฅ
90 โˆ’ 3๐‘ฅ
90 โˆ’ 2๐‘ฅ
5๐‘ฅ
?
๐‘ฅโˆ’๐‘ฆ
160 + ๐‘ฅ
20 โˆ’ ?
2๐‘ฅ + ๐‘ฆ
30 + 2๐‘ฅ โˆ’ ๐‘ฆ
50 + ๐‘ฅ + ๐‘ฆ
100?โˆ’ 3๐‘ฅ
Full example
[JMC 2002 Q21] Given that ๐ด๐ต = ๐ด๐ถ and ๐‘ง < 90, which of the
following expressions must equal ๐‘ง?
A ๐‘ฅโˆ’๐‘ฆ
B ๐‘ฅ+๐‘ฆ
C ๐‘ฅ + ๐‘ฆ โˆ’ 180
D 180 + ๐‘ฅ โˆ’ ๐‘ฆ
E 180 โˆ’ ๐‘ฅ + ๐‘ฆ
Try to gradually work
out angles in the
diagram (in terms of ๐‘ฅ
and ๐‘ฆ)
๐ท
Two possible ways:
โˆ ๐ด๐ต๐ถ = ๐‘ฆ (ฮ”๐ด๐ต๐ถ is isosceles)
โˆ ๐ด๐ท๐ต = 180 โˆ’ ๐‘ฅ (angles on straight line sum to 180)
Therefore using angles in ฮ”๐ด๐ต๐ท:
๐‘ง = 180 โˆ’ ๐‘ฆ โˆ’ 180 โˆ’ ๐‘ฅ
= 180 โˆ’ ๐‘ฆ โˆ’ 180 + ๐‘ฅ
=๐‘ฅโˆ’๐‘ฆ
?
โˆ ๐ด๐ต๐ถ = ๐‘ฆ (ฮ”๐ด๐ต๐ถ is isosceles)
โˆ ๐ต๐ด๐ถ = 180 โˆ’ 2๐‘ฆ
(angles in triangle ๐ด๐ต๐ถ sum to 180)
โˆ ๐ท๐ด๐ถ = 180 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ
(angles in triangle ๐ด๐ท๐ถ sum to 180)
Therefore ๐‘ง = โˆ ๐ต๐ด๐ถ โˆ’ โˆ ๐ท๐ด๐ถ
= 180 โˆ’ 2๐‘ฆ โˆ’ 180 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ
=๐‘ฅโˆ’๐‘ฆ
?
Check Your Understanding
How far can you get down the angle challenge
wall? (do in order, and draw the diagram first)
๐ถ
๐ท
๏Š โˆ ๐ด๐ถ๐ต = 180 โˆ’ 2๐‘ฅ°
?
๏‹ โˆ ๐ต๐ถ๐ท = 2๐‘ฅ โˆ’ 90°
?
๏Œ โˆ ๐ด๐ต๐ท = 180 โˆ’ ๐‘ฅ
๐‘ฅ
๐ด
๐ต
?
Modelling restrictions on angles
We have already seen we can represent the two base angles of an
isosceles triangle both as ๐‘ฅ to ensure they have the same value.
But how can we model other descriptions?
๐ถ
2๐‘ฅ
?
๐‘ฅ?
๐ด
โ€œAngle ๐ถ๐ต๐ด is twice the
value of angle ๐ถ๐ด๐ต.โ€
๐ต
๐ท
โ€œThe line ๐ด๐ถ bisects the
angle ๐ท๐ด๐ต.โ€
๐ถ
?๐‘ฅ
๐ด
๐‘ฅ?
Bro Note: To โ€˜bisectโ€™ means
to cut in half.
๐ต
Modelling restrictions on angles
๐ด
In a triangle ๐ด๐ต๐ถ, โˆ ๐ถ๐ด๐ต = 2 ×
โˆ ๐ต๐ถ๐ด and โˆ ๐ด๐ต๐ถ = 7 × โˆ ๐ต๐ถ๐ด
๐ต
a) Suggest suitable expressions for
each of the angles.
๐’™, ๐Ÿ๐’™,?๐Ÿ•๐’™
b) Hence determine โˆ ๐ต๐ถ๐ด.
๐’™ + ๐Ÿ๐’™ + ๐Ÿ•๐’™ = ๐Ÿ๐ŸŽ๐’™
๐Ÿ๐ŸŽ๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ
?
So ๐’™ = ๐Ÿ๐Ÿ–°
๐ถ
Exercise 4
1
(on provided worksheet)
Given the value of โˆ ๐ท๐ต๐ด indicated, work out the value of โˆ ๐ท๐ต๐ถ.
โˆ ๐‘ซ๐‘ฉ๐‘จ
โˆ ๐‘ซ๐‘ฉ๐‘ช
๐‘ค
180 โˆ’ ๐‘ค
๐‘ฅ + 10
170?โˆ’ ๐‘ฅ
2๐‘ฅ โˆ’ 30
160?โˆ’ 2๐‘ฅ
90 + 2๐‘ฅ
90 ?
โˆ’ 2๐‘ฅ
130 + ๐‘ฅ โˆ’ 2๐‘ฆ
๐ท
?
๐ด
๐ต
๐ถ
50 โˆ’ ?
๐‘ฅ + 2๐‘ฆ
Given the values of โˆ ๐ด๐ต๐ถ and โˆ ๐ต๐ด๐ถ indicated, work out the value of โˆ ๐ด๐ถ๐ต.
2
๐ด
๐ต
๐ถ
โˆ ๐‘จ๐‘ฉ๐‘ช
โˆ ๐‘ฉ๐‘จ๐‘ช
โˆ ๐‘จ๐‘ช๐‘ฉ
๐‘ฅ
๐‘ฅ
180?โˆ’ 2๐‘ฅ
๐‘ฅ
10
170?โˆ’ ๐‘ฅ
๐‘ฅ + 10
150
20?โˆ’ ๐‘ฅ
2๐‘ฅ + 30
20 โˆ’ 5๐‘ฅ
130?+ 3๐‘ฅ
4๐‘ฅ โˆ’ 20
7๐‘ฅ โˆ’ 30
230 ?
โˆ’ 11๐‘ฅ
Exercise 4
3
(on provided worksheet)
Determine all the angles in each diagram in
terms of ๐‘ฅ and/or ๐‘ฆ.
a
c
๐‘ฆ
180?โˆ’ 2๐‘ฆ
๐‘ฅ
?๐‘ฆ
๐‘ฆ
b
๐Ÿ๐Ÿ–๐ŸŽ โˆ’?๐’™ โˆ’ ๐’š
d
90?โˆ’ ๐‘ฅ
180 โˆ’ 2๐‘ฅ
๐‘ฅ
๐Ÿ๐’™ ?
๐’™ +?๐’š
Exercise 4
(on provided worksheet)
h
e
๐Ÿ๐Ÿ”๐ŸŽ โˆ’?๐’™
20 + ๐‘ฅ
150 โˆ’ ๐‘ฆ
๐Ÿ‘๐ŸŽ โˆ’ ๐’™?+ ๐’š
๐‘ฅ
f
i
๐‘ฅ
?
๐’™ โˆ’ ๐Ÿ๐Ÿ–๐ŸŽ
?
๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™
๐Ÿ๐Ÿ•๐ŸŽ
?โˆ’๐’™
?๐’™
๐‘ฅ
g
๐‘ฆ โˆ’ 10
๐‘ฅ + 20
๐Ÿ๐Ÿ•๐ŸŽ โˆ’?๐’™ โˆ’ ๐’š
?
๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™
๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐’™
?
Exercise 4
(on provided worksheet)
4
Write suitable expressions in terms of ๐‘ฅ for each missing angle. Hence
determine the smallest angle in the diagram in each case.
a
Angle ๐ด๐ต๐ท is 3 times bigger than angle ๐ท๐ต๐ถ.
๐ท
?
3๐‘ฅ
b
๐‘ฅ
4๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ
?
โˆด ๐’™ = ๐Ÿ’๐Ÿ“
?
๐ด
๐ต
๐ถ
Angle ๐ต๐ถ๐ด is twice as large as angle ๐ต๐ด๐ถ.
๐ด
๐‘ฅ?
๐Ÿ—๐ŸŽ° + ๐Ÿ‘๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ°
๐’™ = ๐Ÿ‘๐ŸŽ°?
?
2๐‘ฅ
๐ต
c
The angles ๐ด๐ถ๐ต, ๐ด๐ต๐ถ and ๐ต๐ด๐ถ
are in the ratio 3: 4: 5.
๐ด
๐Ÿ๐Ÿ๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ
โˆด ๐’™ = ๐Ÿ๐Ÿ“°?
Smallest angle = ๐Ÿ’๐Ÿ“°
5๐‘ฅ
?
4๐‘ฅ?
๐ต
๐ถ
?3๐‘ฅ
๐ถ
Exercise 4
5
(on provided worksheet)
[Based on JMO 2005 B4] In this
figure ๐ด๐ท๐ถ is a straight line and
๐ด๐ต = ๐ต๐ถ = ๐ถ๐ท. Also, ๐ท๐ด = ๐ท๐ต. We
wish to find the size of โˆ ๐ต๐ด๐ถ. Let
โˆ ๐ท๐ด๐ต = ๐‘ฅ.
?
๐‘ฅ
?
2๐‘ฅ or 180 โˆ’ 3๐‘ฅ
?
180 โˆ’ 2๐‘ฅ
๐‘ฅ
?
180 โˆ’ 3๐‘ฅ
?
๐‘ฅ
a) By using the information provided,
determine all the remaining angles in
the diagram in terms of ๐‘ฅ.
b) By considering the three angles in
ฮ”๐ท๐ถ๐ต, hence determine โˆ ๐ต๐ด๐ถ.
Solution: ๐Ÿ‘๐Ÿ”°
6
[Based on JMC 2011 Q23] The points ๐‘†, ๐‘‡, ๐‘ˆ lie
on the sides of the triangle ๐‘ƒ๐‘„๐‘…, as shown, so
that ๐‘„๐‘† = ๐‘„๐‘ˆ and ๐‘…๐‘† = ๐‘…๐‘‡. โˆ ๐‘‡๐‘†๐‘ˆ = 40°.
a) Let โˆ ๐‘‡๐‘†๐‘… = ๐‘ฅ° and โˆ ๐‘ˆ๐‘†๐‘„ = ๐‘ฆ°. What is
the value of ๐‘ฅ + ๐‘ฆ?
Solution: ๐Ÿ๐Ÿ’๐ŸŽ°
b) Using the information provided, find
expressions for โˆ ๐‘‡๐‘…๐‘† and โˆ ๐‘ˆ๐‘„๐‘†.
(See diagram)
c) Hence find an expression for โˆ ๐‘…๐‘ƒ๐‘„.
(See diagram)
d) Using your answer to part (a), hence find
the value of โˆ ๐‘…๐‘ƒ๐‘„.
๐Ÿ๐’™ + ๐Ÿ๐’š โˆ’ ๐Ÿ๐Ÿ–๐ŸŽ = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐Ÿ–๐ŸŽ = ๐Ÿ๐ŸŽ๐ŸŽ°
?
?
?
2๐‘ฅ + 2๐‘ฆ
โˆ’ 180
?
180 โˆ’ 2๐‘ฅ
๐‘ฅ
๐‘ฆ
?
180 โˆ’ 2๐‘ฆ
Exercise 4
7
(on provided worksheet)
[Based on TMC Final 2014 Q4] The triangle ๐ด๐ต๐ถ is
isosceles with ๐ด๐ถ = ๐ต๐ถ as shown.
The point ๐ท lies on the line ๐ต๐ถ such that the triangle
๐ด๐ต๐ท is isosceles with ๐ด๐ต = ๐ต๐ท as shown. โˆ ๐ต๐ด๐ถ =
2 × โˆ ๐ต๐ถ๐ด and we wish to work out the value of
โˆ ๐ด๐ท๐ถ.
Suppose we let โˆ ๐ต๐ถ๐ด = ๐‘ฅ. Hence determine:
a) โˆ ๐ต๐ด๐ถ
๐Ÿ๐’™ (as specified)
b) โˆ ๐ถ๐ต๐ด
๐Ÿ๐’™
c) Hence by considering the triangle ๐ถ๐ด๐ท,
determine ๐‘ฅ.
๐Ÿ“๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ° therefore ๐’™ = ๐Ÿ‘๐Ÿ”°
d) Use the remaining information to determine
โˆ ๐ด๐ท๐ถ.
๐Ÿ๐Ÿ๐Ÿ”°
?
?
?
8
[JMO 2004 B1] In the rectangle
ABCD, M and N are the
midpoints of AB and CD
respectively; AB has length 2
and AD has length 1.
Given that โˆ ๐ด๐ต๐ท = ๐‘ฅ°,
calculate โˆ ๐ท๐‘๐‘ in terms of ๐‘ฅ.
?
45°
(because ฮ”๐‘€๐ต๐ถ is isosceles
and right-angled)
?
๐‘ฅ
Solution: ๐Ÿ๐Ÿ‘๐Ÿ“
? โˆ’๐’™
Exercise 4
9
(on provided worksheet)
[Based on JMO 2006 B3] In this diagram, Y lies on the line AC,
triangles ABC and AXY are right angled and in triangle ABX, AX = BX.
The line segment AX bisects angle BAC and angle AXY is seven
times the size of angle XBC.
Let โˆ ๐‘‹๐ต๐ถ = ๐‘ฅ. In terms of ๐‘ฅ, find expressions for:
a) โˆ ๐ด๐‘‹๐‘Œ (see diagram)
?
b) โˆ ๐ต๐‘‹๐‘Œ (hint: the lines ๐‘‹๐‘Œ and ๐ต๐ถ are parallel) (see diagram)
?
c) โˆ ๐‘‹๐ด๐‘Œ (see diagram)
?
d) โˆ ๐ต๐ด๐‘‹ (see diagram: AX?bisects โˆ ๐‘ฉ๐‘จ๐‘ช)
e) โˆ ๐ต๐‘‹๐ด (using the fact that ฮ”๐ต๐‘‹๐ด is isosceles) (see diagram)
?
f) Optional: By considering angles around a suitable point,
hence find โˆ ๐ด๐ต๐ถ.
๐Ÿ๐Ÿ’๐’™ + ๐Ÿ•๐’™ + ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐’™ = ๐Ÿ‘๐Ÿ”๐ŸŽ
๐Ÿ๐ŸŽ๐’™ + ๐Ÿ๐Ÿ–๐ŸŽ = ๐Ÿ‘๐Ÿ”๐ŸŽ
๐Ÿ๐ŸŽ๐’™ =
? ๐Ÿ๐Ÿ–๐ŸŽ
๐’™ = ๐Ÿ—°
14๐‘ฅ
โˆ ๐‘จ๐‘ฉ๐‘ช = ๐Ÿ— + ๐Ÿ๐Ÿ• = ๐Ÿ‘๐Ÿ•°
7๐‘ฅ
180 โˆ’ ๐‘ฅ
๐‘ฅ
90 โˆ’ 7๐‘ฅ
Exercise 4
(on provided worksheet)
10 [JMC 2003 Q23] In the diagram alongside, ๐ด๐ต = ๐ด๐ถ and
๐ด๐ท = ๐ถ๐ท. How many of the following statements are true for
the angles marked?
๐‘ค=๐‘ฅ
๐‘ฅ + ๐‘ฆ + ๐‘ง = 180
๐‘ง = 2๐‘ฅ
A all of them
B two
C one
D none of them
E it depends on ๐‘ฅ
Solution: A
?
[JMC 2005 Q23] In the diagram, triangle ๐‘‹๐‘Œ๐‘ is isosceles, with
11 ๐‘‹๐‘Œ = ๐‘‹๐‘. What is the value of ๐‘Ÿ in terms of ๐‘ and ๐‘ž?
1
A
๐‘โˆ’๐‘ž
2
D ๐‘+๐‘ž
Solution: B
1
B
๐‘+๐‘ž
C ๐‘โˆ’๐‘ž
2
E Impossible to determine
?
12 [JMC 2015 Q25] The four straight lines in the diagram are such
that ๐‘‰๐‘ˆ = ๐‘‰๐‘Š. The sizes of โˆ ๐‘ˆ๐‘‹๐‘, โˆ ๐‘‰๐‘Œ๐‘ and โˆ ๐‘‰๐‘๐‘‹ are
๐‘ฅ°, ๐‘ฆ° and ๐‘ง°.
Which of the following equations gives ๐‘ฅ in terms of ๐‘ฆ and ๐‘ง?
A ๐‘ฅ =๐‘ฆโˆ’๐‘ง
B ๐‘ฅ = 180 โˆ’ ๐‘ฆ โˆ’ ๐‘ง
๐‘ง
๐‘ฆโˆ’๐‘ง
C ๐‘ฅ=๐‘ฆโˆ’
D ๐‘ฅ = ๐‘ฆ + ๐‘ง โˆ’ 90 E ๐‘ฅ =
2
2
Solution: E
?
Exercise 4
13
(on provided worksheet)
[JMO 2008 B3] In the diagram ABCD and APQR are congruent rectangles. The
side PQ passes through the point D and โˆ ๐‘ƒ๐ท๐ด = ๐‘ฅ°. Find an expression for
โˆ ๐ท๐‘…๐‘„ in terms of x.
๐Ÿ
๐Ÿ
Solution: ๐’™
1
๐‘ฅ
2
๐‘ฅ°
1
90 โˆ’ ๐‘ฅ
2
1
90 โˆ’ ๐‘ฅ
2
?
Proof
Now that we have a number of angle skills, including introducing algebraic angles, we
now have all the skills to form a โ€˜proofโ€™.
A โ€˜proofโ€™ is a sequence of justified statements that results in the desired conclusion.
! Examples (which weโ€™ll do later)
๐ด
Using the diagram, prove that
โˆ ๐ด๐ถ๐ท = โˆ ๐ด๐ต๐ถ + โˆ ๐ต๐ด๐ถ
๐ต
๐ถ
๐ท
[JMO 2015 B2] The diagram shows triangle ๐ด๐ต๐ถ, in
which โˆ ๐ด๐ต๐ถ = 72° and โˆ ๐ถ๐ด๐ต = 84°. The point ๐ธ
lies on ๐ด๐ต so that ๐ธ๐ถ bisects โˆ ๐ต๐ถ๐ด. The point ๐น lies
on ๐ถ๐ด extended. The point ๐ท lies on ๐ถ๐ต extended so
that ๐ท๐ด bisects โˆ ๐ต๐ด๐น.
Prove that ๐ด๐ท = ๐ถ๐ธ.
STARTER: Constructing diagrams
Sometimes you are not given a diagram, but have to construct one given information.
Can you form a suitable diagram given each of the descriptions?
Make sure that you use marks/arrows to indicate when sides are the same length or parallel, or where angles are equal.
๐ด
โ€œ๐ด๐ต๐ถ is an
equilateral triangle.โ€
๐ต
โ€œ๐ด๐ต๐ถ is a triangle such
that ๐ด๐ต = ๐ต๐ถ. A point ๐‘ƒ
lies outside the triangle
such that ๐‘ƒ๐ด = ๐‘ƒ๐ต.
๐ถ
๐‘ƒ
๐ต
?
๐ด
๐ด
โ€œ๐ด๐ต๐ถ is a triangle where
โˆ ๐ด๐ต๐ถ = 90°. A point ๐ท
lies on ๐ด๐ถ such that
โˆ ๐ด๐ท๐ต = 90°.โ€
๐ถ
๐ท
?
๐ถ
๐ต
๐ด
โ€œThe point ๐น lies inside
the regular pentagon
๐ด๐ต๐ถ๐ท๐ธ so that ๐ด๐ต๐น๐ธ is a
rhombus.โ€
๐ธ
?
๐น
๐ท
๐ถ
๐ต
Bro Note: For
parallelograms/
rhombuses, we
need not indicate
parallel sides
because it is
implied by the
lengths.
Bro Tip: We name
โ€˜verticesโ€™ (i.e. corners)
using capital letters,
and go either
clockwise or
anticlockwise around
the shape. e.g. If
โ€œ๐ด๐ต๐ถ๐ท is a squareโ€,
then the first two
diagrams are OK, but
the last is not.
๐ด
๐ต ๐ถ
๐ต
๏ƒผ
๏ƒผ
๐ท
๐ท
๐ถ
๐ด
๐ด
๐ต
๏ƒป
๐ถ
๐ท
A harder one for discussionโ€ฆ
Two of the angles of triangle ๐ด๐ต๐ถ are given by โˆ ๐ถ๐ด๐ต = 2๐›ผ and
โˆ ๐ด๐ต๐ถ = ๐›ผ, where ๐›ผ < 45°. The bisector of angle ๐ถ๐ด๐ต meets ๐ต๐ถ at
๐ท. The point ๐ธ lies on the bisector, but outside the triangle, so that
โˆ ๐ต๐ธ๐ด = 90°. When produced, ๐ด๐ถ and ๐ต๐ธ meet at ๐‘ƒ.
Construct the diagram.
Bro Note: To โ€˜bisectโ€™ an
angle is to cut it in half.
So a โ€˜bisectorโ€™ of an
angle is a line which
bisects the angle.
?
Simple Proofs
The simplest proofs just require you to find an angle, but you need to give a
reason for each step.
๐ด๐ต is parallel to ๐ถ๐ท and ๐ฟ๐‘๐‘€ is a
straight line. Prove that ๐‘ฆ = 112°.
โˆ ๐ฟ๐‘๐ต = 68° (corresponding angles are equal)
?
โˆ ๐ฟ๐‘๐ด = 112° (angles on a straight line sum to 180°)
Bro Tip: A helpful way to write out each step of the
proof (when referring to angles) is in the form:
โˆ ๐’‚๐’๐’ˆ๐’๐’† = ๐’—๐’‚๐’๐’–๐’†
(reason)
Test Your Understanding
i
๐‘‡๐‘ƒ = ๐‘„๐‘ƒ and ๐‘ƒ๐‘„๐‘… is a straight line.
Prove that โˆ ๐‘‡๐‘ƒ๐‘„ = 40°
โˆ ๐‘‡๐‘„๐‘ƒ = 70° (angles on straight line sum to 180°)
โˆ ๐‘„๐‘‡๐‘ƒ = 70°
? triangle are equal)
(base angles of isosceles
โˆ ๐‘‡๐‘ƒ๐‘„ = 40° (angles in triangle sum to 180°)
ii (if you finish)
๐ด
๐ต๐ถ๐ท is a straight line. Let โˆ ๐ด๐ต๐ถ = ๐‘ฅ and
โˆ ๐ต๐ด๐ถ = ๐‘ฆ. Prove that โˆ ๐ด๐ถ๐ท = ๐‘ฅ + ๐‘ฆ.
๐‘ฆ
๐‘ฅ
๐ต
๐ถ
๐ท
โˆ ๐ด๐ถ๐ท = 180 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ° (angles in triangle sum to 180°)
โˆ ๐ด๐ถ๐ท = ๐‘ฅ + ๐‘ฆ (angles on a ?
straight line sum to 180°)
Exercise 5a
(on provided worksheet)
1
a
Prove โˆ ๐‘…๐‘„๐ถ = 55°. Your proof should only
require one line and be in the form
โ€œโˆ ๐‘Ž๐‘›๐‘”๐‘™๐‘’ = ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘Ÿ๐‘’๐‘Ž๐‘ ๐‘œ๐‘› โ€
โˆ ๐‘น๐‘ธ๐‘ช = ๐Ÿ“๐Ÿ“° (corresponding angles are equal)
?
๐ด
b
85°
๐ต
๐ธ
?
Prove that โˆ ๐ธ๐น๐ป = 85°. (Your proof should
consist of two lines)
๐ท
๐ถ
(Lots of possible proofs, but hereโ€™s oneโ€ฆ)
โˆ ๐‘ช๐‘ญ๐‘ฎ = ๐Ÿ–๐Ÿ“° (corresponding angles are equal)
โˆ ๐‘ฌ๐‘ญ๐‘ฎ = ๐Ÿ–๐Ÿ“° (vertically opposite angles are equal)
?
๐บ
๐น
๐ป
c
Prove that โˆ ๐ต๐ถ๐ท = 2๐‘ฅ. (Your proof should consist of
three lines)
๐ต
โˆ ๐‘จ๐‘ฉ๐‘ช = ๐’™ (base angles of isosceles triangle ๐‘จ๐‘ฉ๐‘ช are equal)
โˆ ๐‘ฉ๐‘ช๐‘จ = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™ (angles in triangle sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
โˆ ๐‘ฉ๐‘ช๐‘ซ = ๐Ÿ๐’™ (angles on straight line sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
?
๐‘ฅ
๐ด
?
๐ถ
๐ท
Exercise 5a
(on provided worksheet)
2 Draw diagrams which satisfy the following criteria, ensuring you note where lines are of equal
length or parallel. You do NOT need to find any angles.
๐ถ
a
๐ด๐ต๐ถ is a right-angled triangle such that โˆ ๐ถ๐ด๐ต = 90°.
๐ท is a point on ๐ต๐ถ such that ๐ด๐ท = ๐ต๐ท.
๐ท
?
b
๐ต
๐ต
๐ด
๐ด๐ต๐ถ is an isosceles triangle where ๐ด๐ต = ๐ด๐ถ. ๐ท is a
point that lies inside the triangle such that ๐ต๐ถ๐ท is
equilateral.
?๐ท
๐ด
๐ถ
๐ท
c
25°
?
๐ด
d
๐ต
๐ถ
Points ๐ด, ๐ต and ๐ถ lie in that order on a straight line.
A point ๐ท, not on the line, is placed such that
๐ด๐ท = ๐ด๐ต, ๐ต๐ท = ๐ต๐ถ, and โˆ ๐ต๐ท๐ถ = 25°.
๐‘„
๐‘ƒ
Points ๐‘‡ and ๐‘ˆ lie outside a parallelogram ๐‘ƒ๐‘„๐‘…๐‘†, and
are such that triangles ๐‘…๐‘„๐‘‡ and ๐‘†๐‘…๐‘ˆ are equilateral
and lie wholly outside the parallelogram.
๐‘†
?
๐‘ˆ
๐‘‡
๐‘…
Exercise 5a
3
a
(on provided worksheet)
๐ต
๐ด
๐ถ
Prove that โˆ ๐ต๐ถ๐ด = 20°
40°
โˆ ๐‘ฉ๐‘จ๐‘ซ = ๐Ÿ’๐ŸŽ° (base angles of isosceles ๐šซ are equal)
โˆ ๐‘จ๐‘ฉ๐‘ซ = ๐Ÿ๐ŸŽ๐ŸŽ° (angles in triangle sum to 180)
โˆ ๐‘ช๐‘ฉ๐‘ซ = ๐Ÿ–๐ŸŽ° (angles on straight line sum to 180)
โˆ ๐‘ฉ๐‘ซ๐‘ช = ๐Ÿ–๐ŸŽ° (base angles of isosceles ๐šซ are equal)
โˆ ๐‘ฉ๐‘ช๐‘ซ = ๐Ÿ๐ŸŽ° (angles in triangle sum to 180)
?
๐ท
b
๐ต
๐ด
70°
๐ท
๐ถ
๐น
In the diagram, ๐ด๐ต and ๐ถ๐ธ are parallel, and
๐ท๐น = ๐ท๐ธ. Prove that โˆ ๐ท๐ธ๐น = 35°
๐ธ โˆ ๐‘ฉ๐‘ซ๐‘ฌ = ๐Ÿ•๐ŸŽ° (alternate angles are equal)
โˆ ๐‘ญ๐‘ซ๐‘ฌ = ๐Ÿ๐Ÿ๐ŸŽ° (angles on a straight line sum to 180)
? of isosceles ๐šซ๐‘ซ๐‘ฌ๐‘ญ are
โˆ ๐‘ซ๐‘ฌ๐‘ญ = ๐Ÿ‘๐Ÿ“° (as base angles
equal and angles in triangle sum to 180)
Other Types of Proof
๐ต
๐ต๐ถ๐ท is a straight line and ๐ด๐ต = ๐ด๐ถ.
Prove that ๐ด๐ถ bisects the angle ๐ต๐ด๐ท.
70°
๐ถ
๐ด
Before we start this proof, what
specifically are we trying to show?
That โˆ ๐‘ฉ๐‘จ๐‘ช?= โˆ ๐‘ช๐‘จ๐‘ซ
30°
๐ท
Bro Note: You need a conclusion so itโ€™s
clear that your proof is complete..
Refer to the provided โ€˜cheat sheetโ€™.
โˆ ๐ต๐ถ๐ด = 70° (base angles of isosceles
triangle are equal)
โˆ ๐ด๐ถ๐ท = 110° (angles on straight line sum to
180°)
โˆ ๐ต๐ด๐ถ = 40° (angles in triangle sum to 180°)
โˆ ๐ถ๐ด๐ท = 40° (angles in triangle sum to 180°)
โˆ ๐ต๐ด๐ถ = โˆ ๐ถ๐ด๐ท therefore ๐ด๐ถ bisects โˆ ๐ต๐ด๐ท.
Proof ?
๐ต
Similarly, what would we need to do in order to:
๐ท
โ€ฆprove that ๐ด๐ต๐ถ is a straight line?
โ€ฆprove that ๐ด๐ต๐ถ
is isosceles?
?
Show that
โˆ ๐ต๐ด๐ถ = โˆ ๐ต๐ถ๐ด
Show that โˆ ๐ท๐ต๐ด + โˆ ๐ท๐ต๐ถ = 180°
๐ด
๐ต
๐ถ
๐ด
?
๐ถ
Test Your Understanding
i
๐ถ๐ท๐ต is a straight line and ๐ด๐ถ = ๐ด๐ท = ๐ท๐ต.
โˆ ๐ท๐ด๐ต = 72° as shown.
Prove that triangle ๐ด๐ต๐ถ is isosceles.
๐ถ
๐ท
โˆ ๐‘ซ๐‘ฉ๐‘จ = ๐Ÿ‘๐Ÿ”° (base angles of isosceles triangle ๐‘จ๐‘ซ๐‘ฉ are equal)
๐ต
36°
โˆ ๐‘ช๐‘ซ๐‘จ = ๐Ÿ•๐Ÿ° (exterior angle of triangle is sum of two other
interior angles)
Proof ?
โˆ ๐‘ซ๐‘ช๐‘จ = ๐Ÿ•๐Ÿ° (base angles of isosceles triangle ๐‘จ๐‘ช๐‘ซ are equal)
๐ด
โˆ ๐‘ช๐‘จ๐‘ซ = ๐Ÿ‘๐Ÿ”° (angles in triangle sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
โˆ ๐‘ช๐‘จ๐‘ฉ = ๐Ÿ‘๐Ÿ”° + ๐Ÿ‘๐Ÿ”° = ๐Ÿ•๐Ÿ°
ii (if you finish)
โˆ ๐‘ฉ๐‘ช๐‘จ = โˆ ๐‘ช๐‘จ๐‘ฉ = ๐Ÿ•๐Ÿ° โˆด triangle ๐‘จ๐‘ฉ๐‘ช is isosceles.
๐ท
In the diagram, ๐ด๐ต = ๐ต๐ถ = ๐ต๐ท and โˆ ๐ด๐ท๐ถ =
90°. Prove that ๐ด๐ต๐ถ is a straight line.
๐ถ
๐ต
๐ด
Bro Hint: You should choose a
suitable angle to be ๐‘ฅ and start by
writing โ€œLet โˆ ๐‘š๐‘ฆ๐‘Ž๐‘›๐‘”๐‘™๐‘’ = ๐‘ฅโ€
Let โˆ ๐‘ซ๐‘จ๐‘ฉ = ๐’™.
โˆ ๐‘จ๐‘ฉ๐‘ซ = ๐’™ (base angles of isosceles triangle are equal)
โˆ ๐‘จ๐‘ฉ๐‘ซ = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™ (angles in triangle sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
โˆ ๐‘ฉ๐‘ซ๐‘ช = ๐Ÿ—๐ŸŽ โˆ’ ๐’™ (as โˆ ๐‘จ๐‘ซ๐‘ช = ๐Ÿ—๐ŸŽ°)
โˆ ๐‘ฉ๐‘ช๐‘ซ = ๐Ÿ—๐ŸŽ โˆ’ ๐’™ (base angles of isosceles triangle are equal)
โˆ ๐‘ซ๐‘ฉ๐‘ช = ๐Ÿ๐’™ (angles in triangle ๐‘ฉ๐‘ช๐‘ซ sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
โˆ ๐‘ซ๐‘ฉ๐‘จ + โˆ ๐‘ซ๐‘ฉ๐‘ช = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™ + ๐Ÿ๐’™ = ๐Ÿ๐Ÿ–๐ŸŽ° therefore ๐‘จ๐‘ฉ๐‘ช is a straight line.
Proof ?
Exercise 5b
(on provided worksheet)
๐ท
๐ต
1
a
๐ด
๐ด๐ท๐ถ and ๐ด๐ต๐ถ are right-angled triangles where
โˆ ๐ด๐ถ๐ท = 10° and โˆ ๐ท๐ถ๐ต = 70°. Prove that triangle
๐ด๐ต๐ถ is isosceles.
10°
โˆ ๐‘ช๐‘จ๐‘ซ = ๐Ÿ–๐ŸŽ° (angles in triangle ๐‘จ๐‘ช๐‘ซ add to ๐Ÿ๐Ÿ–๐ŸŽ°).
โˆ ๐‘จ๐‘ช๐‘ฉ = โˆ ๐‘จ๐‘ช๐‘ซ + โˆ ๐‘ซ๐‘ช๐‘ฉ = ๐Ÿ–๐ŸŽ°
โˆ ๐‘ซ๐‘จ๐‘ช = โˆ ๐‘จ๐‘ช๐‘ฉ therefore ๐šซ๐‘จ๐‘ฉ๐‘ช is isosceles.
70°
?
๐ถ
๐ธ
b
๐ต
๐ด๐ถ = ๐ต๐ถ, ๐ด๐ถ๐ท is a straight line, โˆ ๐ต๐ถ๐ด = 40°
and โˆ ๐ต๐ถ๐ธ = 70° as per the diagram. Prove
that ๐ด๐ต and ๐ถ๐ธ are parallel.
40° 70°
๐ด
๐ถ
๐ท
โˆ ๐‘ฉ๐‘จ๐‘ช = ๐Ÿ•๐ŸŽ° (base angles in isosceles
triangle ๐‘จ๐‘ฉ๐‘ช are equal)
โˆ ๐‘ฌ๐‘ช๐‘ซ = ๐Ÿ•๐ŸŽ° (angles on straight line at ๐‘ช
sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
โˆ ๐‘ฉ๐‘จ๐‘ช = โˆ ๐‘ฌ๐‘ช๐‘ซ which are corresponding
angles, therefore ๐‘จ๐‘ฉ and ๐‘ช๐‘ฌ are parallel.
?
Exercise 5b
(on provided worksheet)
2
As before, ๐ด๐ถ = ๐ต๐ถ. Suppose also that ๐ถ๐ธ
bisects the angle ๐ต๐ถ๐ท, but unlike before, no
angles are known.
By introducing a suitable variable (you may wish
to start your proof โ€œLet โˆ ๐‘Ž๐‘›๐‘”๐‘™๐‘’ = ๐‘ฅโ€) prove that
๐ด๐ต and ๐ถ๐ธ are parallel.
๐ธ
๐ต
๐ด
๐ถ
๐ท
Let โˆ ๐‘ฌ๐‘ช๐‘ซ = ๐’™.
โˆ ๐‘ฉ๐‘ช๐‘ฌ = ๐’™ (as ๐‘ช๐‘ฌ bisects โˆ ๐‘ฉ๐‘ช๐‘ซ).
โˆ ๐‘ฉ๐‘ช๐‘จ = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™ (angles on straight line
at ๐‘ช sum to ๐Ÿ๐Ÿ–๐ŸŽ°)
?
๐Ÿ๐Ÿ–๐ŸŽโˆ’ ๐Ÿ๐Ÿ–๐ŸŽโˆ’๐Ÿ๐’™
โˆ ๐‘ฉ๐‘จ๐‘ช =
= ๐’™ (base angles of
๐Ÿ
isosceles triangle ๐‘จ๐‘ฉ๐‘ช are equal)
โˆ ๐‘ฉ๐‘จ๐‘ช = โˆ ๐‘ฌ๐‘ช๐‘ซ = ๐’™, and ๐‘จ๐‘ช๐‘ซ is a straight
line, therefore ๐‘จ๐‘ฉ and ๐‘ช๐‘ฌ are parallel.
Exercise 5b
3
(on provided worksheet)
[JMO 2001 B3] In the diagram, B is the midpoint of AC and the lines AP,
BQ and CR are parallel. The bisector of โˆ ๐‘ƒ๐ด๐ต meets BQ at Z.
Draw a diagram to show this, and join Z to C.
(i) Given that โˆ ๐‘ƒ๐ด๐‘ = ๐‘ฅ°, find โˆ ๐‘๐ต๐ถ in terms of x.
(ii) Show that CZ bisects โˆ ๐ต๐ถ๐‘….
?
Exercise 5b
4
(on provided worksheet)
[JMO 2015 B2] The diagram shows triangle ๐ด๐ต๐ถ, in which โˆ ๐ด๐ต๐ถ = 72° and
โˆ ๐ถ๐ด๐ต = 84°. The point ๐ธ lies on ๐ด๐ต so that ๐ธ๐ถ bisects โˆ ๐ต๐ถ๐ด. The point ๐น lies
on ๐ถ๐ด extended. The point ๐ท lies on ๐ถ๐ต extended so that ๐ท๐ด bisects โˆ ๐ต๐ด๐น.
Prove that ๐ด๐ท = ๐ถ๐ธ.
?
Exercise 5b
5
(on provided worksheet)
[JMO 2011 B4] In a triangle ABC, M lies on AC and N lies on AB so that โˆ ๐ต๐‘๐ถ =
4๐‘ฅ°, โˆ ๐ต๐ถ๐‘ = 6๐‘ฅ° and โˆ ๐ต๐‘€๐ถ = โˆ ๐ถ๐ต๐‘€ = 5๐‘ฅ°. Prove that triangle ABC is
isosceles.
?
Exercise 5b
6
(on provided worksheet)
[JMO 2015 B4] The point ๐น lies inside the regular pentagon ๐ด๐ต๐ถ๐ท๐ธ so that
๐ด๐ต๐น๐ธ is a rhombus. Prove that ๐ธ๐น๐ถ is a straight line.
(Hint: the interior angle of a pentagon is 108°)
?
Exercise 5b
7
(on provided worksheet)
[Hamilton 2006 Q2] In triangle ABC, โˆ ๐ด๐ต๐ถ is a right angle. Points P and Q lie
on AC; BP is perpendicular to AC; BQ bisects โˆ ๐ด๐ต๐‘ƒ.
Prove that CB = CQ.
?
Exercise 5b
(on provided worksheet)
8
๐ด๐ต๐ถ is a triangle such that โˆ ๐ด๐ต๐ถ = 90° and ๐ท is a
point on the line ๐ด๐ถ such that ๐ต๐ท = ๐ถ๐ท. By letting
โˆ ๐ท๐ถ๐ต = ๐‘ฅ or otherwise, prove that ๐ถ๐ท = ๐ท๐ด.
(hint: prove that ฮ”๐ด๐ต๐ท is isosceles first).
๐ด
๐ท?
Diagram
๐ถ
๐ต
Let โˆ ๐‘ซ๐‘ช๐‘ฉ = ๐’™.
โˆ ๐‘ซ๐‘ฉ๐‘ช = ๐’™ (base angles of isosceles ๐šซ are equal)
โˆ ๐‘ช๐‘ซ๐‘ฉ = ๐Ÿ๐Ÿ–๐ŸŽ โˆ’ ๐Ÿ๐’™ (angles in triangle sum to 180)
โˆ ๐‘จ๐‘ซ๐‘ฉ = ๐Ÿ๐’™ (angles on straight line sum to 180)
โˆ ๐‘จ๐‘ฉ๐‘ซ = ๐Ÿ—๐ŸŽ โˆ’ ๐’™ (as โˆ ๐‘ซ๐‘ฉ๐‘ช
? + โˆ ๐‘ซ๐‘ฉ๐‘จ = ๐Ÿ—๐ŸŽ°)
โˆ ๐‘ช๐‘จ๐‘ฉ = ๐Ÿ—๐ŸŽ โˆ’ ๐’™ (as angles in ๐šซ๐‘จ๐‘ฉ๐‘ช add to 180)
Proof= โˆ ๐‘ซ๐‘จ๐‘ฉ
โˆด ๐‘จ๐‘ฉ๐‘ซ is isosceles as โˆ ๐‘จ๐‘ฉ๐‘ซ
โˆด ๐‘จ๐‘ซ = ๐‘ฉ๐‘ซ = ๐‘ซ๐‘ช
โ–ก