Transcript Document
Menu
Teoirim 1 Tá uillinneacha rinnurchormhaireacha ar coimhéid
Select the proof required then click
mouse key to view proof.
Theorem 2 The measure of the three angles of a triangle sum to 1800 .
Theorem 3 An exterior angle of a triangle equals the sum of the two interior opposite
angles in measure.
Theorem 4
If two sides of a triangle are equal in measure, then the angles
opposite these sides are equal in measure.
Theorem 5
The opposite sides and opposite sides of a parallelogram
are respectively equal in measure.
Theorem 6
A diagonal bisects the area of a parallelogram
Teoirim 7
Tá tomhas na hullinne ag lár ciorcail cothrom le dhá oiread
thomhas na uillinne ag an imlíne ag seasamh ar an stual céanna
Theorem 8
A line through the centre of a circle perpendicular to a chord
bisects the chord.
Theorem 9
If two triangles are equiangular, the lengths of the corresponding
sides are in proportion.
Theorem 10
In a right-angled triangle, the square of the length of the side opposite to the right angle
is equal to the sum of the squares of the other two sides.
Constructions
Sketches
Quit
Teoirim 1:
Tá uillinneacha rinnurchomhaireacha ar comhéid
T&T 2 ltch 205:
Dein cliceáil chun na céimeanna
A fheiscint diaidh ar ndiaidh
1
4
2
3
Le Cruthu 1 = 3 and
2 = 4
1 + 2 = 1800
Cruthú:
…………..
2 + 3 = 1800
…………..
Líne Díreach
Líne Díreach
1 + 2 = 2 + 3
1 = 3
Ar an modh céanna
2 = 4
Q.E.D.
Constructions
Sketches
Menu
Quit
Teoirim 2:
The measure of the three angles of a triangle sum to 1800 .
Use mouse clicks to see proof
Given:
Triangle
To Prove:
1 + 2 + 3 = 1800
Construction: Draw line through 3 parallel to the base
4 3 5
3 + 4 + 5 = 1800
Proof:
Straight line
1 = 4 and 2 = 5 Alternate angles
1
2
3 + 1 + 2 = 1800
1 + 2 + 3 = 1800
Q.E.D.
Constructions
Sketches
Menu
Quit
Theorem 3:
An exterior angle of a triangle equals the sum of the two interior
opposite angles in measure.
Use mouse clicks to see proof
3
4
To Prove:
Proof:
1
2
1 = 3 + 4
1 + 2 = 1800
…………..
2 + 3 + 4 = 1800
Straight line
…………..
Theorem 2.
1 + 2 = 2 + 3 + 4
1 = 3 + 4
Q.E.D.
Constructions
Sketches
Menu
Quit
Theorem 4:
If two sides of a triangle are equal in measure, then the angles
opposite these sides are equal in measure.
a
Use mouse clicks to see proof
3 4
Given:
Triangle abc with |ab| = |ac|
To Prove:
1 = 2
Construction: Construct ad the bisector of bac
Proof:
b
d
In the triangle abd and the triangle adc
3 = 4
…………..
|ab| = |ac|
|ad| = |ad|
…………..
…………..
Construction
Given.
Common Side.
The triangle abd is congruent to the triangle adc
1 = 2
Constructions
2
1
………..
SAS = SAS.
Q.E.D.
Sketches
Menu
Quit
c
Theorem 5:
The opposite sides and opposite sides of a parallelogram
are respectively equal in measure.
Use mouse clicks to see proof
b
c
3
Given:
Parallelogram abcd
To Prove:
|ab| = |cd| and |ad| = |bc|
4
and
Construction:
1
a
2
d
Proof:
abc = adc
Draw the diagonal |ac|
In the triangle abc and the triangle adc
1 = 4 …….. Alternate angles
2 = 3 ……… Alternate angles
|ac| = |ac| …… Common
The triangle abc is congruent to the triangle adc
………
ASA = ASA.
|ab| = |cd| and |ad| = |bc|
and
abc = adc
Q.E.D
Constructions
Sketches
Menu
Quit
Theorem 6:
A diagonal bisects the area of a parallelogram
b
a
c
Use mouse clicks to see proof
d
x
Given:
Parallelogram abcd
To Prove:
Area of the triangle abc = Area of the triangle adc
Construction:
Proof:
Draw perpendicular from b to ad
Area of triangle adc = ½ |ad| x |bx|
Area of triangle abc = ½ |bc| x |bx|
As |ad| = |bc| …… Theorem 5
Area of triangle adc = Area of triangle abc
The diagonal ac bisects the area of the parallelogram
Constructions
Sketches
Menu
Q.E.D
Quit
Teoirim 7:
(T&T 2 ltch 265)
.
Tá tomhas na hullinne ag lár ciorcail cothrom le dhá oiread
thomhas na uillinne ag an imlíne ag seasamh ar an stual céanna
Dein cliceáil ar do luch chun gach céim a fheiscint
Le Cruthú:
| boc | = 2 | bac |
Tógáil:
Ceangail a le o agus sínigh é amach go r
a
2 5
o
Cruthú: Sa triantán aob
3
| oa| = | ob | …… Is gathanna iad araon
| 2 | = | 3 | …… Triantán comhchosach
1 4
r
c
b
| 1 | = | 2 | + | 3 | …… Uillinn sheachtrach
| 1 | = | 2 | + | 2 |
| 1 | = 2| 2 |
Mar an gcéanna sa triantán eile | 4 | = 2| 5 |
| boc | = 2 | bac |
Constructions
Q.E.D
Sketches
Menu
Quit
Teoirim 8:
Líne trí lár ciorcail atá ingearach le corda ,
(T&T 2 ltch 268)
déroinneann sé an corda sin.
Cliceáil ar do luch chun gach céim a fheiscint
Tugtha:
Ciorcal le lár o
agus líne L ingearach le ab.
Le cruthú :
Tógáil
a
o
| ar | = | rb |
r
Ceangail a le o agus b go o
90 o
Cruthú: Sa dhá thriantán aor agus orb
aro = orb
Tá
L
………….
b
90 o ( Dronuillin )
|ao| = |ob|
…………..
Gathanna. (T aobhagáin)
|or| = |or|
…………..
Slios comónta ( Slios)
an triantán aor iomchuí leis an triantán orb
|ar| = |rb|
………
Rhs = Rhs.
DTS = DTS
Q.E.D
Constructions
Sketches
Menu
Quit
Teoirim 9:
Má tá dhá thriantán comhuilleach (comhchosúil) tá
(T&T 2 ltch 282)
na sleasa comhfhreagracha I gcomhréir (sa chóimheas céanna)
Dein cliceáil ar do luch
Tugtha:
Dhá thriantán le huillinneacha ar comhéid
|ab|
Le Cruthú:
|de|
=
|ac|
|df|
|bc|
=
|ef|
Ar ab marcáil ax ar comhfhad le de.
Tógáil:
Ar ac marcáil ay ar comhfhad le df
x
4
a
d
2
2
5
y e
1
1 = 4
Cruthú
3
f
[xy] comhthreomhar le [bc]
|ab|
|ax|
|ab|
b
1
3
|de|
=
c
Constructions
=
|ac|
|ay|
Mar xy comhtreomhar le bc
|ac| Ar an modh
céanna =
|df|
|bc|
|ef|
Q.E.D.
Sketches
Menu
Quit
Teoirim 10:
I dtriantán dronuilleach tá fad an tsleasa
os comhair na dronuillinne cothrom le
suim fhad cearnaithe an dá shlios eile.
Úsáid do luch chun cliceáil
T&T 2 ltch 288
b
a
a
c
c
c
b
a
c
b
a
b
Constructions
Tugtha :
An Triantán abc
Le Cruthú:
a2 + b2 = c2
Tógáil
3 Thriantán dronuilleach mar léirithe
Cruthú:
Achar na móire. = achar na bige + 4(achar D)
(a + b)2
= c2
a2 + 2ab +b2
= c2 + 2ab
+ 4(½ab)
a2 + b2 = c2
Q.E.D.
Sketches
Menu
Quit