indirect proof
Download
Report
Transcript indirect proof
Indirect Proof and Inequalities
5-5 in One Triangle
Learning Targets
I will identify the first step in an indirect
proof.
I will apply inequalities in one triangle.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Vocabulary
indirect proof
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
So far you have written proofs using direct reasoning.
You began with a true hypothesis and built a logical
argument to show that a conclusion was true.
In an indirect proof, you begin by assuming that
the conclusion is false. Then you show that this
assumption leads to a contradiction. This type of
proof is also called a proof by contradiction.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Helpful Hint
When writing an indirect proof, look for a
contradiction of one of the following: the given
information, a definition, a postulate, or a
theorem.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Check It Out! Example 1
Identify the assumption for the following indirect proof:
A triangle cannot have two right angles.
FIRST: Identify the conjecture to be proven.
Given: A triangle’s interior angles add up to 180°.
Prove: A triangle cannot have two right angles.
ASSUME: Assume the opposite of the conclusion.
An angle has two right angles.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Check It Out! Example 1 Continued
FIND THE CONTRADICTION
Use direct reasoning to lead to a contradiction.
m1 + m2 + m3 = 180°
90° + 90° + m3 = 180°
180° + m3 = 180°
m3 = 0°
However, by the Protractor Postulate, a triangle
cannot have an angle with a measure of 0°.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Check It Out! Example 1 Continued
Step 4 Conclude that the original conjecture is true.
The assumption that a triangle can have
two right angles is false.
Therefore a triangle cannot have two right
angles.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
The positions of the longest and shortest sides of
a triangle are related to the positions of the
largest and smallest angles.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Example 2A: Ordering Triangle Side Lengths and
Angle Measures
Write the angles in order from
smallest to largest.
The shortest side is
smallest angle is F.
The longest side is
, so the
, so the largest angle is G.
The angles from smallest to largest are F, H and G.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Example 2B: Ordering Triangle Side Lengths and
Angle Measures
Write the sides in order from
shortest to longest.
mR = 180° – (60° + 72°) = 48°
The smallest angle is R, so the
shortest side is
.
The largest angle is Q, so the longest side is
The sides from shortest to longest are
Holt McDougal Geometry
.
Indirect Proof and Inequalities
5-5 in One Triangle
A triangle is formed by three segments, but not
every set of three segments can form a triangle.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
A certain relationship must exist among the lengths
of three segments in order for them to form a
triangle.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Example 3A: Applying the Triangle Inequality
Theorem
Tell whether a triangle can have sides with the
given lengths. Explain.
7, 10, 19
No—by the Triangle Inequality Theorem, a triangle
cannot have these side lengths.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Example 3B: Applying the Triangle Inequality
Theorem
Tell whether a triangle can have sides with the
given lengths. Explain.
2.3, 3.1, 4.6
Yes—the sum of each pair of lengths is greater
than the third length.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Check It Out! Example 3a
Tell whether a triangle can have sides with the
given lengths. Explain.
8, 13, 21
No—by the Triangle Inequality Theorem, a triangle
cannot have these side lengths.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Example 4: Finding Side Lengths
The lengths of two sides of a triangle are 8
inches and 13 inches. Find the range of
possible lengths for the third side.
Let x represent the length of the third side. Then
apply the Triangle Inequality Theorem.
x + 8 > 13
x>5
8 + 13 > x
21 > x
Combine the inequalities. So 5 < x < 21. The length
of the third side is greater than 5 inches and less
than 21 inches.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Homework: Pg 348, #16 – 31*
*For the indirect proofs, write only the assumption.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Lesson Quiz: Part I
1. Write the angles in order from smallest to
largest.
C, B, A
2. Write the sides in order from shortest to
longest.
Holt McDougal Geometry
Indirect Proof and Inequalities
5-5 in One Triangle
Lesson Quiz: Part II
3. The lengths of two sides of a triangle are 17 cm
and 12 cm. Find the range of possible lengths for
the third side.
5 cm < x < 29 cm
4. Tell whether a triangle can have sides with
lengths 2.7, 3.5, and 9.8. Explain.
No; 2.7 + 3.5 is not greater than 9.8.
5. Ray wants to place a chair so it is
10 ft from his television set. Can
the other two distances
shown be 8 ft and 6 ft? Explain.
Yes; the sum of any two lengths is
greater than the third length.
Holt McDougal Geometry