4.5 Isosceles and Equilateral Triangles
Download
Report
Transcript 4.5 Isosceles and Equilateral Triangles
4.5 Isosceles and Equilateral Triangles
•
•
•
•
The congruent sides of an isosceles triangle are its legs.
The third side is the base.
The two congruent legs form the vertex angle.
The other two angles are the base angles.
Theorem 4.3 - Isosceles Triangle
Theorem
• If two sides of a triangle are congruent, then the
angles opposite those sides are congruent.
Theorem 4.4 – Converse of the
Isosceles Triangle Theorem
• If two angles of a triangle are congruent, then the
sides opposite those angles are congruent.
Using the Isosceles Triangle Theorems
a. Is segment AB congruent to segment CB? Explain.
Yes, since angle C is congruent to angle A, then segment AB is
congruent to segment CB.
b. Is angle A congruent to angle DEA? Explain.
Yes, since segment AD is congruent to segment ED, then
angle A is congruent to angle DEA.
Theorem 4.5
• If a line bisects the vertex angle of an isosceles
triangle, then the line is also the perpendicular
bisector of the base.
Using Algebra
• What is the value of x?
mC mBDC mDBC 180
54 90 x 180
144 x 180
x 36
Corollary
• A corollary is a theorem that can be proved
easily using another theorem.
– Since a corollary is a theorem, you can use it as a
reason in a proof.
Corollary to Theorem 4.3
• If a triangle is equilateral, then the triangle is
equiangular.
Corollary to Theorem 4.4
• If a triangle is equiangular, then the triangle is
equilateral.
More Practice!!!!!
• Homework – Textbook p. 253 – 254 #1 – 13,
16 – 19.