Stellar Rotation
Download
Report
Transcript Stellar Rotation
Rotational Line Broadening
Gray Chapter 18
Geometry and Doppler Shift
Profile as a Convolution
Rotational Broadening Function
Observed Stellar Rotation
Other Profile Shaping Processes
1
2
Doppler Shift of Surface Element
• Assume spherical star with rigid body rotation
• Velocity at any point on visible hemisphere is
v R
^
^
^
x
y
z
0 sin i cosi
x
y
z
^
zsin i ycosi x
^
xcosi y
^
xsin i z
3
Doppler Shift of Surface Element
• z component corresponds to radial velocity
• Defined as positive for motion directed away
from us (opposite of sense in diagram)
• Radial velocity is
vR xsin i
• Doppler shift is
0
c
vR
0
c
xsin i
4
Radial velocity depends
only on x position.
Largest at limb, x=R.
L
0
Rsin i
0
c
c
v = equatorial
rotational velocity,
v sin i = projected
rotational velocity
v sin i
5
Flux Profile
• Observed flux is (R/D)2 Fν where
F
I cos d
• Angular element for surface element dA
d dA 2
R
• Projected
element
dx dy dA cos
• Expression for flux
I
F 2 dx dy
R
6
Assumption: profile independent of
position on visible hemisphere
F
H( )I
c
dx dy /R
2
dy
H( ) Ic
d
R L
R
y1
y1
R
y1 R x
2
2 1/ 2
2 1/ 2
R 1
L
7
Express as a Convolution
1
G( )
L
y1
I
c
dy /R
y1
I
cos d
0
c
for L
for L
F R
H( ) G( ) H( ) G()
Fc R
H( ) G()
8
G(λ) for a Linear
Limb Darkening Law
Ic
0 1 cos
Ic
• Denominator of G
I
c
cos d
/ 2 2
I cos sin d d
c
0
0
2
0
cos
1
I d d 2 I d
c
1
c
0
0
1
2 I (1 ) d 2 I
2
3
0
1
0
c
2
0
c
I 1
3
0
c
9
G(λ) for a Linear
Limb Darkening Law
Ic
0 1 cos
Ic
• Numerator of G
y1
dy
0
I
2I
cR c
y1
y1
dy
2I 1 cos R
0
0
c
y1
y1
dy
0
2I 1 2Ic cos
R
R
0
0
c
y1
2 1/ 2
1
0
0
2
2
2
2Ic 1 1
2
I
R
x
y
dy
c
2
0 R
L
10
G(λ) for a Linear
Limb Darkening Law
Ic
0 1 cos
Ic
• Analytical solution for second term in numerator
A
2
y
2 1/ 2
1 2
y
2 1/ 2
2
dy y A y A arcsin
2
A
• Second term is
2
01 1
2
2 1/ 2
2
2
2Ic
y(R
x
y
)
(R
x
)arcsin
2
2 R
Ic0
2 (R x )
R
2
2
0
Ic 1
2
L
2
2
y1 R 2 x 2
y1
y
2
2
R x 0
11
G(λ) for a Linear
Limb Darkening Law
Ic
0 1 cos
Ic
2
21 1
1
2
L
L
G
L 1
3
2 1/ 2
2 1/ 2
2
c1 1
c 2 1
L
L
ellipse
parabola
12
Grey atmosphere
case: ε = 0.6
13
14
v sin i = 20 km s-1
v sin i = 4.6 km s-1
15
Measurement of Rotation
• Use intrinsically narrow lines
• Possible to calibrate half width with v sin i, but
this will become invalid in very fast rotators that
become oblate and gravity darkened
• Gray shows that G(Δλ) has a distinctive
appearance in the Fourier domain, so that zeros
of FT are related to v sin i
• Rotation period can be determined for stars with
spots and/or active chromospheres by measuring
transit times
16
Rotation in Main Sequence Stars
• massive stars rotate
quickly with rapid
decline in F-stars
(convection begins)
• low mass stars have
early, rapid spin
down, followed by
weak breaking due to
magnetism and winds
(gyrochronology)
17
L=MRv
18
Angular Momentum – Mass Relation
• Equilibrium with gravity = centripetal acceleration
GM v 2
GM v 2
2
3 2
2
R
R
R
R
• Angular momentum for uniform density
2
2
L
I
k
MR
L MRv MR 2
• In terms of angular speed and density
R
3
GM
2
GM
R 2
1/ 3
L M M 2 / 3 4 / 3 M 5 / 3 1/ 3 M 5 / 3 1/ 6
• Density varies slowly along main sequence L M 5 / 3
19
Rotation in Evolved Stars
• conserve angular
momentum, so as
R increases,
v decreases
• Magnetic breaking
continues (as long as
magnetic field exists)
• Tides in close binary
systems lead to
synchronous rotation
20
Fastest Rotators
• Critical rotation
v crit
1/ 2
GM
M / M sun
1
437
km s
R
R /Rsun
• Closest to critical in the
B stars where we find
Be stars (with disks)
• Spun up by Roche lobe
overflow from former
mass donor in some
cases (ϕ Persei)
21
22
Other Processes That Shape Lines
• Macroturbulence and granulation
http://astro.uwo.ca/~dfgray/Granulation.html
23
Star Spots
Vogt & Penrod 1983, ApJ, 275, 661
HR 3831
Kochukhov et al. 2004, A&A, 424, 935
http://www.astro.uu.se/~oleg/research.html
24
Stellar Pulsation
http://staff.not.iac.es/~jht/science/
Vogt & Penrod 1983, ApJ, 275, 661
25
Stellar Winds
• Atoms scatter starlight
to create P Cygni
shaped profiles
• Observed in stars
with strong winds
(O stars, supergiants)
• UV resonance lines
(ground state transitions)
http://www.daviddarling.info/encyclo
pedia/P/P_Cygni_profile.html 26
FUSE spectra (Walborn et al. 2002, ApJS, 141,443)
27
To really know a star ... get a spectrum
• “If a picture is worth a thousand words, then
a spectrum is worth a thousand pictures.”
(Prof. Ed Jenkins, Princeton University)
28