Transcript pptx
Neutrino Geoscience
Physics and Geology
a brief history…
Collaborations bring the best results
1930 – Pauli invokes the neutrino
1956 – Reines & Cowan detect ne
1984 – Krauss et al develop the map
2003 – KamLAND shows ne oscillate
2005 – KamLAND detects first geonus
2010 – Borexino 4.2s on Earth signal
2011 – ne signal require primordial
heat
2013 – Combine detector events to
reveal the mantle signal
2020 – Neutrino Tomography! (?)
2011
2005
Detecting
Geoneutrinos
from the Earth
2010
Nature & amount of Earth’s thermal power
radiogenic heating vs secular cooling
- abundance of heat producing elements (K, Th, U) in
estimates of BSE from 9TW to 36TW
the Earth
- clues to planet formation processes
constrains chondritic Earth models
- amount of radiogenic power to drive mantle
convection & plate tectonics
estimates of mantle 1.3TW to 28TW
- is the mantle compositionally layered? or has large
layers, LLSVP, superplume piles
structures?
the future is…
Geoneutrino studies
U content of BSE models
• Nucelosynthesis: U/Si and Th/Si production probability
• Solar photosphere: matches C1 carbonaceous chondrites
• Estimate from Chondrites: ~11ppb planet (16 ppb in BSE)
• Heat flow: secular cooling vs radiogenic contribution… ?
• Modeling composition: which chondrite should we use?
A brief (albeit biased) history of U estimates in BSE:
•Urey (56) 16 ppb
Turcotte & Schubert (82; 03) 31 ppb
•Wasserburg et al (63) 33 ppb
Hart & Zindler (86) 20.8 ppb
•Ganapathy & Anders (74) 18 ppb
McDonough & Sun (95) 20 ppb ± 20%
•Ringwood (75) 20 ppb
Allegre et al (95) 21 ppb
•Jagoutz et al (79) 26 ppb
Palme & O’Neill (03) 22 ppb ± 15%
•Schubert et al (80) 31 ppb
17%
Lyubetskaya & Korenaga (05) 17 ppb ±
•Davies (80) 12-23 ppb
O’Neill & Palme (08) 10 ppb
•Wanke (81) 21 ppb
Javoy et al (10) 12 ppb
Earth Models Update: …just the last year!
Murakami et al (May - 2012, Nature): “…the lower mantle is enriched in
silicon … consistent with the [CI] chondritic Earth model.”
Campbell and O’Neill (March - 2012, Nature): “Evidence against a
chondritic Earth”
Zhang et al (March - 2012, Nature Geoscience): The Ti isotopic composition
of the Earth and Moon overlaps that of enstatite chondrites.
Fitoussi and Bourdon (March - 2012, Science): “Si isotopes support the
conclusion that Earth was not built solely from enstatite chondrites.”
Warren (Nov - 2011, EPSL): “Among known chondrite groups, EH yields a
relatively close fit to the stable-isotopic composition of Earth.”
- Compositional models differ widely, implying a factor of
three difference in the U & Th content of the Earth
Enstatite chondrite
vs
Earth
Carbonaceous
chondrites
diagrams from Warren
(2011, EPSL)
Carbonaceous
chondrites
Carbonaceous
chondrites
142Nd:
what does it tell us about the
Earth and chondrites?
Please stop
saying that
the e142Nd =
18 ± 5 ppm
for chondrites
Data from:
Gannoun et al (2011, PNAS); Carlson et al (Science, 2007)
Andreasen & Sharma (Science, 2006); Boyet and Carlson (2005, Science);
Jacobsen & Wasserburg (EPSL, 1984); Qin et al (GCA, 2011)
Earth’s surface heat flow 46 ± 3 (47 ± 1) TW
Mantle cooling
(18 TW)
Crust R*
(7 ± 1 TW)
(Huang et al ‘13)
Core
(~9 TW)
Mantle R*
(13 ± 4 TW)
-
(4-15 TW)
total R*
20 ± 4
*R radiogenic heat
(after McDonough & Sun ’95)
after Jaupart et al 2008 Treatise of Geophysics
(0.4 TW) Tidal dissipation
Chemical differentiation
Summary of geoneutrino results
MODELS
Cosmochemical: uses meteorites – O’Neill & Palme (’08); Javoy et al (‘10); Warren (‘11)
Geochemical: uses terrestrial rocks – McD & Sun ’95; Allegre et al ‘95; Palme O’Neil ‘03
Geodynamical: parameterized convection – Schubert et al; Turcotte et al; Anderson
Constructing a 3-D
reference model Earth
assigning chemical
and physical states
to Earth voxels
3D imaging of the Earth’s K-Th-U distribution
Surface geoneutrino flux
Yu Huang et al (2013) arXiv:1301.0365
Early Earth differentiation followed by
4 billion years of plate tectonics
Kellog et al (sciences 2000)
What’s hidden in the mantle?
Seismically slow “red” regions in the deep mantle
Can we image it
with geonus?
No, not that CMB, … Core – Mantle Boundary
Retsima et al (Science, 1990)
Forming the Moon from terrestrial silicate-rich material (2013)
R.J. de Meijer, V.F. Anisichkin, W. van Westrenen (Chemical Geology).
Forming the Moon
from a geo-reactor
at the core-mantle
boundary 4.5 Ga
The latest form of
“fission hypothesis”
for the origin of the
Moon
Mantle geonuetrino flux
Mantle = BSE - Crust
14+8 TNU
Bellini et al 2013
13 TW
3-8 TW
Depleted MORB Mantle
6-10 TW
“EL”: hot basal layer
Low Q
Med. Q
High Q
(10 ppb U)
(20 ppb U)
(30 ppb U)
Predicted geoneutrino flux
Flux at the surface
dominated by
Continental crust
Yu Huang et al (2013) arXiv:1301.0365
Flux at the Moho
dominated by
deep mantle structures
Šrámek et al (2013) 10.1016/j.epsl.2012.11.001; arXiv:1207.0853
Present and future LS-detectors
SNO+, Canada (1kt)
Borexino, Italy (0.6kt)
Europe
LENA,
EU
(50kt)
Hanohano, US
ocean-based (10kt)
KamLAND, Japan (1kt)
Future Experiments: world-wide deployable
Pauli class research submarine
Living and
research
quarters
10 ktons
Hanohano-like
n
Liquid scintillation
Next Gen
or WIMP detector
Liquid Ar, Xe
Segmented research vessel with two detectors
“Coincidence counting detectors”
International Collaboration
Geosciences
- Neutrino tomography
Physics
- Fundamental matter studies
Applied
- Reactor studies
The RV n-Star
AN OVERVIEW
GOALS
LOCATIONS
- anywhere in the ocean
- depth of 1k - 4k m.w.e.
to reduce m-&cosmogenic bkgd
- n-beam studies
mass hierachy – CP violation
reactor neutrinos
mantle geoneutrinos
artificial neutrino sources
supernova neutrinos
+ geology, biology, monitoring
SUMMARY (~before today…)
Earth’s radiogenic (Th & U) power 22 ± 12 TW or 11.2 +- 7.9
TW
5.1
Prediction: models range from 8 to 28 TW (for Th & U)
On-line and next generation experiments:
- SNO+ online 2013/14
- Daya Bay II: good experiment, limited geonu application?
- LENA??: will the Europeans push on, put LENA in the ocean!
- Hanohano or RV n-Star: this is FUNDAMENTAL for geosciences
Geology must participate and it must contribute to the cost
-- experiment cost ~$300M; Geology’s contribution $150M; International --
Future:
- Neutrino Tomography of the
Earth’s deep interior