Bioinformatics Tools
Download
Report
Transcript Bioinformatics Tools
Introduction to Bioinformatics
Lecturer: Prof. Yael Mandel-Gutfreund
Teaching Assistance:
Rachelly Normand
Edward Vitkin
Course web site :
http://webcourse.cs.technion.ac.il/236523
What is Bioinformatics?
2
Course Objectives
• To introduce the bioinfomatics discipline
• To make the students familiar with the major
biological questions which can be addressed
by bioinformatics tools
• To introduce the major tools used for
sequence and structure analysis and explain
in general how they work (limitation etc..)
3
Course Structure and Requirements
1.Class Structure
1.
2.
2 hours Lecture
1 hour tutorial
2. Home work
•
Homework assignments will be given every second
week
•
The homework will be done in pairs.
•
5/5 homework assignments will be submitted
2. A final project will be conducted in pairs
* Project will be presented as a poster –poster day 19.3
4
Grading
• 20 % Homework assignments
• 80 % final project
(10% proposal,
20% supervisor evaluation
70% poster presentation)
5
Literature list
• Mount, D.W. Bioinformatics: Sequence and Genome
Analysis. 2nd ed.,Cold Spring Harbor Laboratory
Press, 2004.
Advanced Reading
Jones N.C & Pevzner P.A. An introduction to
Bioinformatics algorithms MIT Press, 2004
6
What is Bioinformatics?
7
What is Bioinformatics?
“The field of science in which biology, computer
science, and information technology merge to
form a single discipline”
Ultimate goal: to enable the discovery of new
biological insights as well as to create a global
perspective from which unifying principles in
biology can be discerned.
8
Central Paradigm in Molecular Biology
Gene (DNA)
mRNA
Protein
21ST centaury
Genome
Transcriptome
Proteome
9
From DNA to Genome
Watson and Crick
DNA model
1955
1960
1965
1970
1975
1980
1985
10
1990
First genome
Hemophilus Influenzae
1995
Yeast genome
2000
First human
genome draft
11
Complete Genomes
Total
2010
1379
2005
294
Eukaryotes
133
39
Bacteria
1152
235
Archaea
94
23
Total complete genomes 10.10.13 = 7381
12
1,000 Genomes Project: Expanding the
Map of Human Genetics
Researchers hope the effort will speed up
the discovery of many diseases's genetic
roots
13
25000 genomes… What’s Next ?
The “post-genomics” era
Annotation
Comparative
genomics
Functional
genomics
Systems
Biology
Main Goal:
To understand the living cell
14
And beyond…
Personalized medicine
15
From ….25000 genomes
To…Understanding living cells
Annotation
CCTGACAAATTCGACGTGCGGCATTGCATGCAGACGTGCATG
CGTGCAAATAATCAATGTGGACTTTTCTGCGATTATGGAAGAA
CTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTC
AGAATGCTTTTAATAAGCGGGGTTACCGGTTTGGTTAGCGAGA
AGAGCCAGTAAAAGACGCAGTGACGGAGATGTCTGATG CAA
TAT GGA CAA TTG GTT TCT TCT CTG AAT ......
.............. TGAAAAACGTA
17
Identify the genes within a
given sequence of DNA
Identify the sites
Which regulate the gene
Annotation
Predict the function
What do they do???
18
How do we identify a gene
in a genome?
A gene is characterized by several features (promoter, ORF…)
some are easier and some harder to detect…
19
Using Bioinformatics approaches for Gene hunting
Relative easy in simple organisms (e.g. bacteria)
VERY HARD for higher organism (e.g. humans)
20
Comparative
genomics
21
Perhaps not surprising!!!
How humans
are chimps?
Comparison between the full drafts of the human and chimp genomes
revealed that they differ only by 1.23%
How can we be so similar--and yet so different?
22
Where are we different ??
Where are we similar ???
VERY
DIFFERENT
VERY SIMAILAR
Conserved between
many organisms
23
Sometime minor changes in critical genes
can make a big difference
Human ATAGCGGGGGGATGCGGGCCCTATACCC
Chimp ATAGGGGGGATGCGGGCCCTATACCC
Mouse ATAGCGGGATGCGGCGCTATACCA
Human ATAGCGGGGGGATGCGGGCCCTATACCC
Chimp ATAGGGG--GGATGCGGGCCCTATACCC
Mouse ATAGCG---GGATGCGGCGC-TATACC-A
24
Single change in a genes among humans can
be responsible for sever diseases
Sickle Cell Anemia
Due to 1 swapping of an A for a T
Image source: http://www.cc.nih.gov/ccc/ccnews/nov99/
25
Healthy Individual
>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA
GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]
EEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
MVHLTP
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH
26
Diseased Individual
>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA
GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC
>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]
VEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
MVHLTP
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH
27
Functional
genomics
28
TO BE IS NOT ENOUGH
In any time point a gene can be functional or not
29
The difference in the brain size between Human and apes is mainly related
to the different levels of the genes expression and not their content
Systems
Biology
31
Biological networks
Jeong et al. Nature 411, 41 - 42 (2001)
What can we learn from
Biological Networks
What can we
learn about this
protein
• Is the protein essential for the organism ?
• Is it a good drug targets?
How can bioinformatics
contribute to Medicine?
http://www.tedmed.com/talks/show?id=17961
34
What of all this will we learn in
the course?
The course will concentrate on the bioinformatics
tools and databases which are used to :
- Annotate genes,
- Compare genes and genomes
- Infer the function of the genes and proteins
- Analyze the interactions between genes and proteins
ETC….
35
Main Topics
1. Introduction to bioinformatics
2. Pairwise alignment
3. Database search
4. Protein alignments
5. MSA and phylogenetic analysis
6. Sequencing
7. Motif search-function prediction
8. Gene expression
9. Structural bioinformatics
(proteins and RNA)
10. Biological networks
36