Transcript Figure 3
Bacterial Stress Response
Proteins and Their Influence on
the Immune Response
Amy Thees
How do bacteria adapt to changes
in their environment?
• Types of stress
– Physicochemical and chemical
– Nutritional deprivation
– Toxic compounds
– Interactions with other cells
• Strategies (Adaptation)
– Eliminate stressor
– Repair damage
– Escape
Examples of Bacterial Stress
Responses
•
•
•
•
•
•
Heat and cold shock
Envelope and oxidative stress
Oxygen and amino acid scarcity
Osmotic and pH stress
SOS response to DNA damage
Metalloregulation between bacterial homeostasis and
resistance
• Sporulation
• DNA uptake
Infection and Colonization
• Adapt metabolism to host environment
• Combat innate antimicrobial host defense
mechanisms
– Iron limitation
• Structure and catalytic cofactor
– Production of toxic reactive oxygen (ROS)
and nitrogen species (RNS)
• Ex. Superoxide anion (O2-) , hydroxyl radical (OH), peroxynitrite (ONOO-), hydrogen peroxide
(H2O2), nitric oxide (NO)
Bacterial Stress Proteins
• OxyR
– LysR regulator
– Transcriptional activator in oxidizing conditions
• PerR
– Ferric uptake regulator
– Peroxide-responsive repressor
– Gram positive
• Both regulate expression of:
– Catalase peroxidase (kat)
– Alkyl hydroperoxide reductase (ahp)
Electron shuttles to relieve excess reducing equivalents and redox-active
compounds due to ROS damage and oxidative stress
• Electron carrier flavoprotein (Fld)
•
•
•
•
Mobile electron shuttle with flavin mononucleotide (FMN) prostetic group
Back up for ferredoxin (Fd)
Long chain- Anabaena (IsiB) and Escherichia coli (FldA)
Short chain- Pseudomonas aeruginosa and Pseudomonas putida
•
Annotated as mioC (ortholog in Escherichia coli)
• Pseudomonas aeruginosa
•
•
•
•
Opportunistic human pathogen
Wide metabolic diversity
Large flexible genome- adaptable
FldP- encoded by PA14_22540 gene and 184 amino acids
Figure 1. Primary and secondary structures of FldP from P. aeruginosa.
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa
from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163. doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
FldP from P. aeruginosa is a functional
flavodoxin
Figure 2
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects
Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163.
doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
Role of FldP in cell survival and ROS
accumulation upon exposure to H2O2
Figure 3
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects
Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163.
doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
Role of FldP in cell survival and ROS
accumulation upon exposure to H2O2
Figure 3
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects
Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163.
doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
Figure 4. FldP mitigates H2O2-induced cell
death in a mutT-deficient P. aeruginosa.
Figure 5. FldP decreases the H2O2-induced
mutation frequency in mutT-deficient P.
aeruginosa.
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa
from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163. doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
Figure 6. Induction and regulation of fldP
expression.
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A
Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative
Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163.
doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.
1004163
Figure 7. FldP enhances P. aeruginosa survival within
mammalian macrophages and during in vivo infection of
Drosophila melanogaster.
Figure 8. fldP is a component of the P.
aeruginosa variable genome.
Figure 9. Transcriptional organization of
RGP32.
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, et al. (2014) A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa
from Oxidative Stress and Host Bacterial Clearance. PLoS Genet 10(2): e1004163. doi:10.1371/journal.pgen.1004163
http://127.0.0.1:8081/plosgenetics/article?id=info:doi/10.1371/journal.pgen.1004163
FldP Protection in Oxidative
Stress
• Strong induction of fldP gene in response to H2O2
– Role in oxidant response
• Enhanced ROS build-up and lower survival of fldP null
mutants exposed to H2O2
– Defense against ROS
• Partial protection by FldP overexpression to
P.aeruginosa cells deficient in mutT against harmful
effects and increased mutational burden caused by
H2O2
– Contributes to bacterial tolerance to oxidative response
of host immune system
Mycobacterium avium ssp. paratuberculosis (MAP)
•Intracellular macrophage persister
•Heat resistant- pasteurization
•Johne’s disease in cattle and other ruminants
•Controversal causative agent in Crohn’s disease
•Slow growing
•FurA
• Iron homeostasis- binds Fe2+ in E. coli
• Potential regulatory component of stress response
• Located upstream of katG (catalase peroxidase)
Characterization of MAPΔfurA Deletion Mutant
Figure 1
Eckelt, E., Meißner, T., Meens, J., Laarmann, K., Nerlich, A., Jarek, M., Goethe, R. (2015). FurA contributes to
the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Frontiers in
Microbiology, 6, 16. doi:10.3389/fmicb.2015.00016
Determination of the FurA Regulon of MAP
• RNA deep sequencing
– Transcriptome- sequence and frequency of RNA molecules
at particular time in a specific cell type
• Count number of mRNAs encoded by individual genes
• Results
– 48 genes differentially expressed in mutant strain compared
to wt
• 13 higher- Table 1
• 35 lower- Table 2
– Orthologous groups
• 40% metabolism
• 20.75% cellular processes and signaling
• 39.62% poorly characterized or uncharacterized
• ***No genes related to iron homeostasis***
Figure 2: Regulatory Influence of FurA Figure 3: Response of FurA Regulated
AhpD to Oxidative Stress
Eckelt, E., Meißner, T., Meens, J., Laarmann, K., Nerlich, A., Jarek, M., Goethe, R. (2015). FurA contributes to
the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Frontiers in
Microbiology, 6, 16. doi:10.3389/fmicb.2015.00016
Induction of Oxidative Burst in Macrophages
Eckelt, E., Meißner, T., Meens, J., Laarmann, K., Nerlich, A., Jarek, M., Goethe, R. (2015). FurA contributes to
the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Frontiers in
Microbiology, 6, 16. doi:10.3389/fmicb.2015.00016
Survival of MAP Strains in Macrophages
C
Eckelt, E., Meißner, T., Meens, J., Laarmann, K., Nerlich, A., Jarek, M., Goethe, R. (2015). FurA contributes to
the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Frontiers in
Microbiology, 6, 16. doi:10.3389/fmicb.2015.00016
Role of FurA for Survival in the Host
Eckelt, E., Meißner, T., Meens, J., Laarmann, K., Nerlich, A., Jarek, M., Goethe, R. (2015). FurA contributes to
the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Frontiers in
Microbiology, 6, 16. doi:10.3389/fmicb.2015.00016
Conclusion
• FurA acts as repressor for a selective group of
genes involved in the response to oxidative
stress
– Iron-based sensor of ROS
• Closely related to PerR
• FurA contributes to activation of second group
of genes
– Macrophage survival
My Grant Proposal
• Specific Aim: Characterize the role of PmtA, a
bacterial metallothionein protein in Pseudomonas
aeruginosa, in macrophage survival and determine
whether the mechnism is diminished in PmtA deficient
mutant, PW4670.
• Hypothesis:
Questions?