Prezentace aplikace PowerPoint
Download
Report
Transcript Prezentace aplikace PowerPoint
Acid-Base Balance Disorders
LECTURE FROM PATHOPHYSIOLOGY
2012/2013
OLIVER RÁCZ & EVA LOVÁSOVÁ
INSTITUTE OF PATHOPHYSIOLOGY
UPJŠ LF KOŠICE
17.7.2015
abre.ppt
1
Introductory remarks
Acidobasic balance (ABB) First of all ABB of
extracellular space – blood
7,4 = 40 nmol/l H+ (or 4*10-7 mol/l )
(not H+ but H3O+)
CO2 production: 20 mols/day (300 – 360 l)
Strong (non-volatile) acid production: 60 – 70
mmols/day
17.7.2015
oxidation of SH groups (amino acids): sulfate
hydrolysis of proteins, phospholipids: phospate
keto acids, lactic acid...
abre.ppt
2
Logarithms
[H+]
Exp
pH
pH
nmol/l
mmol/l
100 mmol/l
-1
1
7,1
79
10 mmol/l
-2
2
7,2
63
1 mmol/l
-3
3
7,3
50
100 mmol/l
-4
4
7,4
40
10 mmol/l
-5
5
7,5
31
1 mmol/l
-6
6
7,6
25
100 nmol/l
-7
7
7,7
20
10 nmol/l
-8
8
7,8
16
1 nmol/l
-9
9 abre.ppt
7,9
12
17.7.2015
3
Physiological a pathological values
Blood
Physical exercise
Frontiers of life
Urine
Red cells
Muscle cells
Bile
Duodenal juice
Prostata cells
Gastric juice
17.7.2015
pH
7,36 - 7,44
7,10
6,80 - 7,70
H+ nmol/l
44 - 36
94
158 - 20
4,50 - 8,00
32000 – 10
7,28
6,90
6,2 - 8,5
6,5 - 7,6
4,50
1,2 - 3,0
53
126
631 - 3
316 - 25
32 mmol/l
1000 - 63
abre.ppt
4
ABB
Measurement
Not very long ago...
17.7.2015
abre.ppt
5
„Astrup”
Arterial or arterialised capillary blood
(hyperemisation of finger or auricle)
0,1 ml into heparinised capillary tube without air,
immediate measurement
pH and pCO2 electrochemically
pCO2
5,3 ± 0,53 kPa
1,2 ± 0,12 mmol/l
Other – calculated
actual bicarbonates
24 ± 2 mmol/l
anion gap
9 – 17 mmol/l
standard bicarbonates
as actual
base excess
0 ± 2 mmol/l
buffer base
49 ± 3
17.7.2015
abre.ppt
6
Buffers and regulatory systems
Buffers only absorb the attacks of hydrogen ions and
prevent sudden big fluctuations of pH.
Closed systems
hydrogencarbonate
phosphate
haemoglobin/protein
bones (carbonate)
Regulatory systems – open, regulate the
hydrogencarbonate system
respiratory (provisional, delayed)
excretory (definite)
17.7.2015
abre.ppt
7
17.7.2015
abre.ppt
8
Henderson and Hasselblach
pH = pK + log [HCO3]/[CO2]
pK = 6,1
HCO3 = 24 mmol/l
CO2 = 40 mmHg = 5,3 kPa = 1,2 mmol/l
pH = 6,1 + log (24/1,2) = 6,1 + 1,3
pH = 7,4
17.7.2015
abre.ppt
9
S im p le A B R diso rd e rs
a cid o sis
p H < 7 ,35
m e tab o lic
H C O 3 < 22
re sp ira to ry
C O 2 > 5 ,8
a lka lo sis
p H > 7 ,45
m e tab o lic
H C O 3 > 26
re sp ira to ry
C O 2 < 4 ,8
Acute and chronic
Not compensated, partial compensated, corriged
17.7.2015
abre.ppt
10
Henderson and Hasselblach 1
metabolic acidosis – something is
decreasing bicarbonate (24)
HCO3 = 12 mmol/l
CO2 = 1,2 mmol/l
pH = 6,1 + log (12/1,2) = 6,1 + 1,0
pH = 7,1
COMPENSATION THROUGH
HYPERVENTILATION (CO2 OUT)
HCO3 = 12 mmol/l CO2 = 0,6 mmol/l
pH = 6,1 + log (12/0,6) = 6,1 + 1,3
pH = 7,4 is everything OK???
17.7.2015
abre.ppt
11
Henderson and Hasselblach 2
metabolic alkalosis – too much of
bicaarbonate
HCO3 = 36 mmol/l CO2 = 1,2 mmol/l
pH = 6,1 + log (36/1,2) = 6,1 + 1,5
pH = 7,6
COMPENSATION THROUGH
HYPOVENTILATION (CO2) RETENTION
HCO3 = 36 mmol/l CO2 = 1,8 mmol/l
pH = 6,1 + log (36/1,8) = 6,1 + 1,3
pH = 7,4 is everything OK???
17.7.2015
abre.ppt
12
Henderson and Hasselblach 3
respiratory acidosis – asfyxia
HCO3 = 24 mmol/l CO2 = 2,4 mmol/l
pH = 6,1 + log (24/2,4) = 6,1 + 1,0
pH = 7,1
COMPENSATION THROUGH ACID
EXCRETION
HCO3 = 48 mmol/l CO2 = 2,4 mmol/l
pH = 6,1 + log (48/2,4) = 6,1 + 1,3
pH = 7,4 is everything OK???
17.7.2015
abre.ppt
13
Henderson and Hasselblach 4
respiratory alkalosis – histeria, mountain
sickness
HCO3 = 24 mmol/l CO2 = 0,8 mmol/l
pH = 6,1 + log (24/0,8) = 6,1 + 1,5
pH = 7,6
COMPENSATION THROUGH ACID
RETENTION
HCO3 = 16 mmol/l CO2 = 0,8 mmol/l
pH = 6,1 + log (16/0,8) = 6,1 + 1,3
pH = 7,4 is everything OK???
17.7.2015
abre.ppt
14
Acids bind and decrease bicarbonate
Respiratory insufficiency increases CO2
Increased bicarbonate
Decreased CO2
20 HCO3
MAC
RAC
MAL
RAL
1 CO2
7,4
17.7.2015
abre.ppt
15
RAC, MAC, RAL, MAL
7,2
7,3
CO2
7,4
7,5
7,6
17.7.2015
abre.ppt
HCO3
16
Compensation
7,2
7,3
CO2
7,4
7,5
7,6
17.7.2015
abre.ppt
HCO3
17
Compensated disorders
7,2
7,3
CO2
7,4
7,5
7,6
17.7.2015
abre.ppt
HCO3
18
Respiratory compensation of MAC
Exspiration of CO2 (Kussmaul) balances the
decreased bicarbonate
Delayed – respiration reacts to pH in the brain
Danger – delay also during treatment:
HCO3 and pH restored through treatment
Hyperventilation persists
Respiratory alkalosis!
17.7.2015
abre.ppt
19
Kidneys
Synthesis of bicarbonate in renal tubular cells
H20 + CO2 H2CO3 H+ + -HCO3
Complete resorbtion of bicarbonate into blood
Maximal excretion of H+ through exchange for
Na+, K+ and by protone pump
In filtrate H+ ions associate with ammonia and
primary phosphate
H+ + NH3 = NH4+
17.7.2015
H+ + HPO42- = H2PO4abre.ppt
20
Metabolic acidosis
pH < 7,35; HCO3 < 22 mmol/l
Increased production of endogenous acids –
diabetic ketoacidosis, lactic acidosis
Exogenous acids or compounds metabolised to
acids – ethylene glycol, methanol, salicylate
Bicarbonate losses through GIT or kidneys
(diarrhoe, intestinal fistulae, kidney diseases)
Insufficient excretion of H+ in acute or chronic
kidney failure and in some hereditary
tubulopathies
17.7.2015
abre.ppt
21
Severity of metabolic acidosis
pH
HCO3
Light
7,35 – 7,30
22 – 20
Medium
7,30 – 7,20
20 – 16
Severe
7,20 – 7,10
16 – 10
< 7,10
< 10
Very severe
17.7.2015
abre.ppt
22
Ketones ?
Lactate ?
Other ?
Anion gap
15
25
AG
HCO3-
15
25
15
15
140
110
100
Na+
100
Cl-
1: norma, anion gap 15 mmol/l
2: MAC, bicarbonate ,chloride , anion gap 15 mmol/l
3: MAC, bicarbonate ,chloride norm, anion gap
17.7.2015
abre.ppt
23
Ketoacidosis during starvation
Lipid catabolism
Gluconeogenesis from oxalacetate, an
important intermediate od Krebs cycle
Accumulation of acetylcoenzyme A
Ketonemia without hyperglycaemia
Decreased albumin, phosphate depletion
17.7.2015
abre.ppt
24
Diabetic ketoacidosis I
(cell starvation)
Nondiagnosed Type 1 DM, increased insulin
demand during intercurrent diseases
Hyperglycaemia
Polyuria and dehydratation (glycosuria)
Lipid degradation, gluconeogenesis, Krebs cycle
blockade
Ketonemia, ketonuria (instead of nitroprusside test
specific b-hydroxybutyrate assay – in blood, too)
Kussmaul breathing, disturbed consciousness, coma
Increased anion gap
17.7.2015
abre.ppt
25
Diabetic ketoacidosis II
(electrolyte disorder)
Hyponatremia, hypophosphatemia
Intracellular potassium depletion due to
insulin deficiency
outflow of K+ from cells (acidosis)
Urinary losses of K+ (osmotic diuresis, RAA
system activation in dehydration)
Not always connected with hypokalemia
Dangerous hypokalemia can occur during
too rapid treatment with insulin
FOLLOW IT!
17.7.2015
abre.ppt
26
Ketoacidosis in alcohol, methanol and
ethylene glycol intoxication
Ethanol acetaldehyde, b-hydroxybutyrate (AG) and
thiamin deficiency (coenzyme of pyruvate
dehydrogenase)
Hypalbuminemia, hypomagnesemia
Tissue hypoxia (lactic acid)
But: vomitus leads to MAL
Methanol formaldehyde, formic acid (AG)
Optic nerve (alcohol dehydrogenase)
Ethanol as treatment
Ethylene glycol glyoxal, oxalic acid (AG)
Acute tubular necrosis
17.7.2015
27
Treatment: dialysis andabre.ppt
ethanol
Lactic acidosis
Hypoxia (A) or block of degradation (B)
A – respiratory diseases, circulatory failure,
anaemia. With RAC
B – some oral antidiabetics of biguanide type
(withdrawn or strict indication –
contraindications), fructose, sorbitol
B – some malignancies, thiamin deficiency
hereditary enzyme defects (G6PD)
Norm < 1,3 mmol/l
> 5 mmol/l high mortality
17.7.2015
abre.ppt
28
Acidosis in kidney failure
Simple principle – decrease of glomerular
filtration < 0,3 ml/s (n = 2 ml/s*) the
kidneys are not able to resorb bicarbonate
and excrete acids
Complicated reality – adaptory mechanisms
of tubuli / damage of tubuli
Anion gap phosphates potassium
Dialysis
17.7.2015
abre.ppt
29
MAC with normal anion gap
(hyperchloremic)
Bicarbonate losses through GIT (diarrhoe)
Renal tubular acidoses
RTA II – proximal type
RTA I – distal type
RTA III – mixed
RTA IV – with hyperkalemia
17.7.2015
abre.ppt
30
Acids and aldehydes
Formic acid and formaldehyde, (from methanol)
CH3OH H2C=O HCOOH
Acetic acid and acetaldehyde (from ethanol)
C2H5OH CH3-HCO CH3-COOH
Oxalic acid and glyoxal (from ethylene glycol “antifreeze”)
HOCH2-CH2OH OHC-CHO HOOC-COOH
Lactic acid (from glycolysis)
CH3-CHOH-COOH
b-hyrdroxybutyric, acetoacetic acid and acetone (stravation,
insulin deficiency)
CH3-CHOH-CH2-COOH, CH3-CO-CH2-COOH, CH3-CO-CH3
17.7.2015
abre.ppt
31
Metabolic alkalosis
pH > 7,45; HCO3- > 26 mmol/l
Decrease of extracellular space volume
Metabolites
smaller space and increased K+ and H + secretion due to
activation of renin-angiotensin-aldosterone system, Na
reabsorbtion, hypokaliemia
citrate from blood transfusions, milk alkali syndrome,
metabolites of ketone bodies
Mineralocorticoids – Na+ retention, K+ and H+ depletion
Chloride depletion – diuretics, vomitus, Mg deficiency
Dg. 17.7.2015
help: Urinary chloride excretion
< or > 10 mmol/day32
abre.ppt
Respiratory acidosis
pH < 7,35; pCO2 > 5,8 kPa
Connection between ABR and tissue oxygen supply –
remember haemoglobin dissociation curve
CO2 in red cells is rapidly converted (carboanhydrase) to
H2CO3 which dissociates to H+ and HCO3Respiration is regulated by pH and pCO2
RAC – in respiratory disorders (as a part of global
respiratory insufficiency) and in hemodynamic failure
Renal compensation is not complete
Tisue hypoxia leads to lactate acidosis
17.7.2015
abre.ppt
33
Respiratory alkalosis
pH > 7,45; pCO2 < 4,8 kPa
Hyperventilation
psychogenic, fever, G negative sepsis
mountain disease, CO intoxication
some drugs – aminophyllin, salicylate
some lungs diseases – pulm. embolism
Parestesia, cramps, arrhythmias (ionized Ca++)
17.7.2015
abre.ppt
34